Getting Started Kits

Kit Contents

Each kit has the following items:
e Board with microcontroller (18(L)F4620)
o Power brick for the board.
e Programmer, and power brick for programmer.
e USB logic analyzer
o Digital Volt Meter.
o Serial cable
« Needle nose and cutting pliers.

EE-41430 Fall 2007 Microcontroller Functions -2

Board

The schematic of the board is shown below:

EE-41430 Fall 2007

Microcontroller Functions -3

Board

Power Section:

]

)

ol

seto

,4_)

ok
4_

.
¥ 5#:
£ 5
% o

EE-41430 Fall 2007 Microcontroller Functions -4

Board Layout

(X

o

) D

a0

~ 1|

EE-41430 Fall 2007 Microcontroller Functions -5

Board Features

This is a general purpose board, that will accept
most of the 40 pin Microchip microcontrollers.
It has built in:
o Serial port interface
e LED's on port D
e LCD interface (also on port D)
e Programmer interface

e Locations where an RTC chip and serial EEPROMS may
be added.

EE-41430 Fall 2007 Microcontroller Functions -6

Board Features

The board has 2 voltage regulators on it, and you
can select to run the processor at either 3.3 or 5.0
volts. (LCD gets 5 volts in any case.)

Your board might have either an 18LF4620 or an
18F4620.

Note: Only the 18LF4620 will run at 3.3 volts.

The processor has a simple program in it, which
writes to the LCD display, blinks the lights, and
then exercises the serial port.

EE-41430 Fall 2007 Microcontroller Functions -7

Notes

Some of these boards were built by students in
previous years. No guarantees.

The programmer connection to the board may or
may not be keyed to prevent incorrect
connections. The edge of the connector towards
you is painted gold or silver. Incorrectly
connecting the programmer has the nasty habit of
blowing very small transistors on the board. |
have replacements, but you will be doing the
repairs.

You should plan on ordering free sample
microcontrollers from Microchip, before you do
something that destroys the one you have.

EE-41430 Fall 2007 Microcontroller Functions -8

Notes

The power brick used for the microcontroller board
is cheap and unregulated. Don’t expect the
voltage you get to be the voltage on the slide
switch.

You will want about 7 volts out of the power brick.
(In one of the tasks, you will determine why.) You
should use the meter to find the lowest setting of
the slide switch that gives you about 7 volts.

There is a polarity switch on the power brick. It
should be to the left.

EE-41430 Fall 2007 Microcontroller Functions -9

Notes

The USB logic analyzer software should be on the
machines in the ELC, (as should the rest of the
software used in this course.)

When connecting the logic analyzer, you can place
the leads directly over the header pins that are on
the board. This is far easier then the little clips.

Do not remove the leads from the logic analyzer to
use for jumpers. They are expensive ($60 to
replace the set), and | lost too many in the past. (If
| see you doing this, you will loose your logic
analyzer and it is a very useful tool.)

EE-41430 Fall 2007 Microcontroller Functions -10

18F4620 Microcontroller

R. M. Schafer
EE — Senior Design

Why this processor?

This processor is overkill for most projects. (More
memory and features than necessary.)

It makes a lot of sense to use a processor with
excess capacity to develop your prototype.
(Why?)

EE-41430 Fall 2007 Microcontroller Functions -12

Device Features

Power Management:

EE-41430 Fall 2007

Power Managed Modes:

Run: CPU on, peripherals on

Idle: CPU off, peripherals on

Sleep: CPU off, peripherals off

Idle mode currents down to 2.5 A typical
Sleep mode current down to 100 nA typical
Timer1 Qscillator: 1.8 pA, 32 kHz, 2V
Watchdog Timer: 1.4 pA, 2V typical
Two-Speed Oscillator Start-up

Microcontroller Functions -13

Clock

EE-41430 Fall 2007

Device Features

Flexible Oscillator Structure:

+ Four Crystal modes, up to 40 MHz

+ 4x Phase Lock Loop (PLL) — available for crystal
and internal oscillators)

+ Two External RC modes, up to 4 MHz

+ Two External Clock modes, up to 40 MHz

Internal oscillator block:

- 8 user selectable frequencies, from 31 kHz to
8 MHz

- Provides a complete range of clock speeds
from 31 kHz to 32 MHz when used with PLL

- User tunable to compensate for frequency drift

+ Secaondary oscillator using Timer1 @ 32 kHz

Fail-Safe Clock Monitor

- Allows for safe shutdown if peripheral clock stops

Microcontroller Functions -14

Device Features

Peripherals:

EE-41430 Fall 2007

High-current sink/source 25 mA/25 mA
Three programmable external interrupts
Four input change interrupts

Up to 2 Capture/Gompare/PWM (CCP) modules,
one with Auto-Shutdown (28-pin devices)
Enhanced Capture/Compare/PVWM (ECCP)
module (40/44-pin devices only):

- One, two or four PWM outputs

- Selectable polarity

- Programmable dead time

- Auto-Shutdown and Auto-Restart

Microcontroller Functions -15

Peripherals:

EE-41430 Fall 2007

Device Features

* Master Synchronous Serial Port (MSSP) module

supporting 3-wire SPI™ (all 4 modes) and |2gm™

Master and Slave modes

Enhanced Addressable USART module:

- Supports RS-485, RS-232 and LIN 1.2

- RS-232 operation using internal oscillator
block (no external crystal required)

- Auto-Wake-up on Start bit

- Auto-Baud Detect

10-bit, up to 13-channel Analog-to-Digital

Converter module (A/D):

- Auto-acquisition capability

- Conversion available during Sleep

Dual analog comparators with input multiplexing

Programmable 16-level High/Low-Voltage

Detection (HLVD) module:

- Supports interrupt on High/Low-Voltage Detection

Microcontroller Functions -16

Configuration Bits

There are a number of what are called configuration

bits or fuses that are associated with the 18F4620.

These are bits that cannot be changed during the
running of the program, but can only be set when
the device is programmed.

These bits can either be set within the programmer
software, or using compiler directives.

The latter is a better approach.

EE-41430 Fall 2007 Microcontroller Functions -17

Configuration Bits

Configuration bits control a number of things and are discussed under
“Special Features of the CPU” in the documentation.

TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs

Default!
File Name Bit7T | Eité | Bits | Bitd Bit3 Bit2 Bit1 Bitd | Unprogrammed
Value
CONFIGIH IESD FCMEN FOSC3 FOSC2 FOSC1 FOSCO ao. 0111
CONFIG2L = [= — BORVI | BORVD | BOREN1 | BORENO | PWRTEN| ---1 1111
CONFIG2H | WDTPS3 | WDTPS2 [WDTPS1 | WOTPS0 | WOTEN 1 1111
CONFIG3H | MCLRE | — — | = | — |ipTi0Sc|PBADEN |CCP2MX| 1--- -013
CONFIGAL | DEBUG | XINST | — - = LvP — | STVREN| 10-- -1-1
300008h | CONFIGSL | | | crall | cr2 cP1 cPo 1111
3000000 |CONFIGEH | CPD | CPB = — — — — — 11-- ----
30000AR (CONFIGEL | wrTall WRT2 WRT1 WRTO 1111
30000Bh [CONFIGEH | WRTD | WRTB | WRTC 111
0DOOCH [CONFIGTL | EBTRIM | EBTR2 | EBTR1 | EBTRO 1111
300000h_[CONFIGTH [EBTRE 1
3FFFFER [DEVIDI™ | DEv2 | DEV1 | DEvO | REV4 | REVA | REV2 | REVI | REVD | oo soced
3FFFFFN |DEVIDZM! | DEVID | DEV6 | DEVE | DEVT | DEVS | DEV5 | DEV4 | DEV3 | oooo 1100

EE-41430 Fall 2007 Microcontroller Functions -18

Configuration Bits

These bits are set in pragma directives:

#pragma DATA 0x300001, _OSC_HS_1H // HS osc
#pragma DATA 0x300003, _WDT_OFF _2H // wdt off
#pragma DATA 0x300006, _LVP_OFF 4L // lvp off
#pragma DATA _CONFIG3H, _MCLRE_ON_3H //enable mclr

These are using definitions found in the system.h
include file.

EE-41430 Fall 2007 Microcontroller Functions -19

Configuration Bits

The location of the config register is defines:

#define _CONFIG1H 0x00300001
#define _CONFIG2L 0x00300002
#define _CONFIG2H 0x00300003
#define _CONFIG3H 0x00300005
#define _CONFIG4L 0x00300006

Various bit in the resisters are defined also:

#define _0SC_HS_1H 0X000000F2 // HS
#define _0SC_RC_1H 0X000000F3 // RC
#define _0SC_EC_1H 0X000000F4 // EC-0SC2 as Clock Out
#define _0SC_ECI06_1H 0X000000F5 // EC-0SC2 as RA6
#define _OSC_HSPLL_1H 0X000000F6 // HS-PLL Enabled

EE-41430 Fall 2007 Microcontroller Functions -20

Configuration Bits
To turn off the watch dog timer:

#pragma DATA 0x300003, _WDT_OFF_2H
or
#pragma DATA _CONFIG2H, _WDT_OFF_2H

To set the oscillator to high speed and multiply the crystal
speed by 4:

#pragma DATA 0x300001, _OSC_HSPLL_1H //40 mhz

Things like the latter should be done advisedly, because the
18LF4620 will not operate at 40 MHz at lower voltages.

EE-41430 Fall 2007 Microcontroller Functions -21

Configuration Bits

| recommend that you:

e Turn off the watch dog timer, until you are sure that you
want to use it.

e Turn off low voltage programming
e The boards that you will be using have 10MHz crystals
on them. You should set the oscillator to HS or HSPLL,
depending on the desired speed.
In addition, there is a pragma for the clock
frequency:
#pragma CLOCK_FREQ 10000000
This directive is necessary if you use any of the built
in delay routines, as the program needs to know
how fast the clock is.

EE-41430 Fall 2007 Microcontroller Functions -22

18F4620 Ports

In the following slides, we will look at the ports (I/0)
available on the microcontroller form both an
electrical and software point of view.

EE-41430 Fall 2007 Microcontroller Functions -23

Port Electrical Characteristics

When connecting things to ports, we are concerned
with the current and voltage at the pins.

The electrical spec specifies:
e V,, — Voltage that will be interpreted as high on an input.
* V, —Voltage that will be interpreted as low on an input
e Vo, — Voltage on the pin in the output high state.
e Vo — Voltage on the pin in the output low state.
e loy— Current a pin will source in the high output state.
e lg — Current a pin will sink in the low output state.

Note that as inputs, the impedance is very high, and thus
there is very little current into the device. This is called
“leakage” current and is on the order of 1pA.

EE-41430 Fall 2007 Microcontroller Functions -24

Port Electrical Characteristics

The input voltages are the easiest, since the input impedance
is so high.

For the 4620 running at 5.0 volts, these are the values:

Viy minimum 2.0 volts

V. maximum 0.8 volts

This means that the minimum voltage on an input pin
that is guaranteed to be read as “high” is 2.0 volts,
and the maximum voltage on an input pin that is
guaranteed to be read as “low” is 0.8 volts.

EE-41430 Fall 2007 Microcontroller Functions -25

Port Electrical Characteristics

26.3 DC Characteristics: PIC18F2525/2620/4525/4620 (Industrial)
PIC18LF2525/2620/4525/4620 (Industrial)

Standard {uniless. stated)

DC CHARACTERISTICS Operating temparature -40°C < Ta < +85°C for industrial
P;’;"" Symbol Characteristic Min Max |Units Conditions.
Wi Input Low Voltage
10 ports:
Da3o with TTL bufler Vs 015Voo |V [VDD <45V
O304 - <] vV [48V<VoD 55V
D31 with Schmitt Trigger buffer Vas 02veo | W
D032 MELR Vss 02veo | V
D033 0sC1 vss 03Voo | W [MS, HSPLL modes
Do33a asc1 Wss 02voo | WV [RC, EC modest!
Do33e 0sC1 Va5 0.3 Voo V[T LP modes
D034 T13CKI Vas 0.3 Voo v
WiH Input High Voltage
L0 ports:
Do40 with TTL buffer 0.25 Voo + 0.8V Voo Vo |Voo < 4.5V
DO404 20 Voo V|45V s Voo s 5.5V
Doa1 with Schevitt Trigger buffer 0.8Vveo Voo v
Do4z MCLR 0.8 Voo Voo v
D43 0sc1 0.7 Voo Voo W |HS, HSPLL modes
D434 Q5C1 0.8voo Voo W |EC mode
00438 0sC1 0.9 Voo Voo v |RC model®
Do43c 0sc1 16 Voo V|XT, LP mades
D44 T13CKI 16 Voo W
EE-41430 Fall 2007 Microcontroller Functions -26

Port Electrical Characteristics

Outputs aren’t as easy, since we must consider both the
voltage and the current. For example, if we short an output
pin to ground, we shouldn’t expect it to produce a “high”
output voltage.

Vou minimum 4.3 volts lon <-3MA

Vo, maximum 0.6 volts |lg <85mA

The Vg, spec says a high output will be a minimum of 4.3 volts
as long as the current out of the pin is less than 3 mA.

The Vg, spec says a low output will be a maximum of 0.6 volts
as long as the current into the pin is less than 8.5 mA.

Note that current into the device is defined as positive.

EE-41430 Fall 2007 Microcontroller Functions -27

Port Electrical Characteristics

26.3 DC Characteristics: PIC18F2525/2620/4525/4620 (Industrial)
PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

P " .]
ap g C (unless athierwise stated}
DC CHARACTERISTICS Operating temperature ~40°C % TA < +85°C for industrial
P‘:::m y c Min Max | Units Conditions
WL Qutput Low Voltage
Doao O ports. _ 06 Vo |loe = 8.5 mA, Voo = 4.5V,
-40°C to +85°C
Does 0SC2/CLKO — 08 v |lou=1.8mA, VoD =45,
(RC, RCIO, EC, ECIO mades) -40°C to +85°C
VoH |Output High Voltage!®!
Dos0 110 ports Voo -0.7 - v |low=-30mA, VoD =45V,
-40°C to +85°C
Dos2 0SC2/CLKO Voo -0.7 — V [loH=-13mA, VoD =45V,
(RC, RCIO, EC, ECIO mades) -A0°C o +85°C

EE-41430 Fall 2007 Microcontroller Functions -28

Port Electrical Characteristics

Remember that the output stage is a couple of
transistors. A MOSFET (in the triode operating
region) looks like a small resistor. We should
expect aresistor like relationship between the
voltage and current at the pin.

+5 volts
. source
ate
RECET
drain
110
Port
. drain
ate
EELT
source
EE-41430 Fall 2007 Microcontroller Functions -29

Port Electrical Characteristics

In addition to sourcing 3.5 mA and sinking 8mA,
there is also a restriction on the total current
sourced or sunk by groups of I/O ports.

Added together, the current sourced or sunk by all
ports combined can’'t exceed 200 mA.

The absolute maximum information is found in the
device document.

EE-41430 Fall 2007 Microcontroller Functions -30

Port Electrical Characteristics

26.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(t

Ambient temperature under bias. A0°C to +125°C
Storage P] -65°C to +150°C
\oltage an any pin with respect to VVss (except Voo and MCLR) oo -0.3V to (Voo + 0.3V)
altage on VDO with respect to Vss -0.3V 1o 4T 5V
\oltage an MCLR with respect to \Vss (Note 2) OV to +13.25V
Total power dissipation (Note 1) B—
Maximum Clrmant QUL of WSS BIM Lot s b b 300 mA
Maximum current inte VoD pin 250 mA
Input clamp current, lik (Vi < 0 or Vi > Voo) 20 mA
Output clamp current, lox (Vo < 0 or Vo = Vo) +20 mA
Maximum cutput current sunk by any /0 pin. 5 mA
Maximum cutput current sourced by any 1/0 pin w25 MA
Baximum CLment SUNK BY @1 OIS L. itms st iam s micses e cmbs e b d 8 amics SR b4 b e 200 mA
Maximum current scurced by all ports ... S 200 mA
EE-41430 Fall 2007 Microcontroller Functions -31

18F4620 Ports

Many of the ports on R
the 4620 have special oata -
functions, and 1 T =,
therefore have S RN
different electronics, S
but the basic port P _
. . pok
looks like this: TR T (] e
e | (]:I Bufer

0 Pt

13

Hote 1: O NS Nave GO0E PIOECION 13 VDD and Vss

EE-41430 Fall 2007 Microcontroller Functions -32

18F4620 Ports

There are two latches (flip-flops) associated with
each bit of the port.

The top one holds the data that is being output to
the port.

The bottom one controls whether this bit is an input
or an output.

Data l
°oe Holds the data bei
iR LAT <:| olds the data being output
o Pon KTy

Data Laich
._|n o <:| Determines if the port is

an input port or an

output port.

WR TRIS cK X

TRIS Latch

EE-41430 Fall 2007 Microcontroller Functions -33

18F4620 Ports

The tri-state gate lets ports be either outputs or

18F4620 Ports

To be used as an output, one or the other of the
transistors is on, allowing data to be sent to the
I/0O pin.

When both transistors are off, the “output” is
disconnected and the input can be read.

uuuuu

Data Lalch
o @

EE-41430 Fall 2007 Microcontroller Functions -35

inputs.
<J
b a]
10 pint™?
R W
<[D Q ’—.
EE-41430 Fall 2007 Microcontroller Functions -34
18F4620 Ports
Note:_There are a R
variety of read and oata
write signals that do I b o oy
i g . R T - 1 pin ™
different thing. — il
et Lty
e a
WR TRIS oL
TRIS Laich) mput
L -] [/l Bufer
ADTRS
_',14‘0 1] I:‘
30 Port \[:\/Q
Hote 1: VO NS have dode pmlemm VoD ana vss.
EE-41430 Fall 2007 Microcontroller Functions -36

Basic I/O

So how do | uses these ports in a C program?

There are three registers associated with each 1/O
port. They are called:

e port
e lat
o tris

Tris is the register associated with the direction
(input or output of the pin)

Port is where your read from to see what the inputs
are.

Lat is where you write to (does the same thing as
writing to port)

EE-41430 Fall 2007 Microcontroller Functions -37

Basic I/O

Note that the device does a read-modify-write. That means
that the state of the port is first read, then it is modified,
then it is reloaded into the register.

In some circumstances, this can cause issues if you are
writing and immediately reading and the signal hasn’t had
a chance to settle.

Figure 32-5: Example CLKOUT and VO Timing Waveforms

CLKoUT

10 P
tnow)

Vo PR
OIpIT

Mote: [leter to Figurs 32-1 tor load condbions

4620 Ports

The 4620 has:
e 4 8-bit ports named a, b, c, and d.
e One 3-bit port named e.
Thus there is, associated with port a, three 8-bit
registers:
e porta
e trisa
o lata
The same is true, mutatis mutandis, for the other
ports.

EE-41430 Fall 2007 Microcontroller Functions -39

EE-41430 Fall 2007 Microcontroller Functions -38
4620 Ports
The registers associated with e
each port (and all of the rest of o
the registers that we will -
discuss) are memory mapped :;'::j
into particular locations. g
Fortunately, the header file ‘"
<system.h> makes it easy to |
use these memory mapped :;E:}
registers. =
poet
-
o]

Fisn
Fizn
Fith| PORTE

EE-41430 Fall 2007 Microcontroller Functions -40

10

system.h system.h
. . . i The system.h file defines registers in lower case using
The system.h file defines register names (in all caps) as:

volatile char porta @PORTA;
#define PORTA 0x00000F80 volatile char portb @PORTB;
#define PORTB 0x00000F81 volatile char portc @PORTC;
#define PORTC 0x00000F82 volatile char portd @PORTD;
#define PORTD 0x00000F83 volatile char porte @PORTE;
#define PORTE 0x00000F84 volatile char lata @LATA;
#define LATA 0x00000F89 volatile char latb @LATB;
#define LATB 0x00000F8A volatile char latc @LATC;
#define LATC 0x00000F8B le char latd @LATD;
#define LATD 0x00000F8C char late @LATE;
#define LATE 0x00000F8D le char ddra @DDRA;
#define DDRA 0x00000F92 le char trisa @DDRA;
#define TRISA 0x00000F92 le char ddrb @DDRB;
#define DDRB 0x00000F93 le char trisb @DDRB;
#define TRISB 0x00000F93 le char ddrc @DDRC;
#define DDRC 0x00000F94 le char trisc @DDRC;
#define TRISC 0x00000F94 le char ddrd @DDRD;
#define DDRD 0x00000F95 volatile char trisd @DDRD;
#define TRISD 0x00000F95 volatile char ddre @DDRE;
#define DDRE 0x00000F96 volatile char trise @DDRE;

EE-41430 Fall 2007 Microcontroller Functions -41 EE-41430 Fall 2007 Microcontroller Functions -42

system.h Parallel 1/0

The net effect is that registers names (in Suppose we have LED’s connected to port a on the

IOW_er case) can be used as ordinary microcontroller. If we wish to send the value of a

variables. variable data to the LED’s, we need to do two
This is true of all of the registers, not just the things: _

registers associated with the ports. * Make port ainto an output port

e Send the desired data to port a

In C, this is pretty trivial:
trisa=0; // set all bits of port a output
lata = data; // send datato the led’s

EE-41430 Fall 2007 Microcontroller Functions -43 EE-41430 Fall 2007 Microcontroller Functions -44

Parallel 1/0O

If we have an input device connected to bit 4 of port
b (such as a switch that will make the 1/0 pin O or
5 volts)
o Make bit 4 of port b into an input
¢ Read in the data

Again, this is pretty trivial:
trisb |= 00010000b; // set bit 4 input
data = portb; //read in the port

Note:

o reading portb reads the input lines; reading latb reads
the output latch.

EE-41430 Fall 2007 Microcontroller Functions -45

Parallel 1/O

-
el
RO AT T
Ll ———
Dala ‘ e,
Bus o a ~]
WR LAT ' Vo pint™
or Port hnkx
Data Laich
- D o]
WR TRIS cK
TRIS Lalch nput
A j Buffer
RD TRIS]
-

4 Q o 1
\[EN
RD Port I |

Mote 1: /O ping have dade prataction to VoD and vee,

EE-41430 Fall 2007 Microcontroller Functions -46

More Powerl!ll

There will be many situations where the limited ability of an
output port to source/sink current is insufficient to drive
the output device being controlled, or the required voltage
is higher than 5 volts.

Examples include:
e Higher current LEDs
e Turning motors on and off
e Activating relays, solenoids, etc.

The solutions to these problems is to use an external device
such as a transistor to provide sufficient current/voltage
for the device, and use the limited power of the
microcontroller output to turn the external device on and
off.

EE-41430 Fall 2007 Microcontroller Functions -47

Serial I/O

One of the most common interfaces found on
computers is the serial interface.

Bytes of data are sent in a serial fashion, that is, one
bit at a time.

The standard for serial interface is called RS-232. It
is used to send data over distances on the order
of 25 feet.

It is gradually being replaced in modern computers
by the faster and more flexible USB (Universal
Serial Bus) interface.

RS-232 is still very common, very simple to
implement, and well supported by software.

EE-41430 Fall 2007 Microcontroller Functions -48

12

Serial 1/0

Why worry about serial I/O in a microcontroller?

e There are many applications where either the major
function of an embedded system, or an auxiliary
function, is the logging of data. Microcontrollers
typically don’t have enough memory to store significant
amounts of data, but a serial link can be used to allow a
laptop or other computer to log data sent to it by the
microcontroller.

o If you are developing software for an embedded control
application, and do not have an integral display (such
as the LCD display on the systems we are using in the
lab), a serial connection allows data to be written to a
computer for debugging purposes. It is worth the little
extra hardware to have this ability.

EE-41430 Fall 2007 Microcontroller Functions -49

Serial I/0O

Why worry about serial I/O in a microcontroller?

e RS-232is the simplest form of serial I/O, but there are
many other serial /O standards that evolved from the
desire to interface things to microcontrollers without
using up lots of I/O port pins.

e Other common serial interfaces are SPI (Serial
Peripheral Interface), I2C (Inter-Integrated Circuit), and
various other forms of one wire and three wire
interfaces.

EE-41430 Fall 2007 Microcontroller Functions -50

Serial 1/0

There are several things that must be done to
connect a microcontroller to a computer.

e You need an application running on the computer that
can accept serial data. A commonly available
application is HyperTerminal, which is a simple
terminal emulation program that is standard software
on all PC’s.

o Data sent between the microcontroller and the
computer is sent using particular voltages (that are
different from the standard voltages found on a
microcontroller.) This requires level conversion.

¢ You need software in the microcontroller that will read
and write serial data.

EE-41430 Fall 2007 Microcontroller Functions -51

Serial Data Format

If a data byte with the bits labeled b, — b, is sent
over a serial link, the format looks like this:

Stop

Start
i Bit

i Do bi b by by by | by by

The line is normally high, and the start bit begins a
transmission by going low. Each bit of the byte
being sent follows as a 1 or a 0. Finally, the stop
bitis sent as a 1.

EE-41430 Fall 2007 Microcontroller Functions -52

13

Serial Data Format

If a data byte with the bits labeled b, — b, is sent
over a serial link, the format looks like this:

Start Stop
Bit b, b, b, b, b, bs bg b, Bit

The line is normally high, and the start bit begins a
transmission by going low. Each bit of the byte
being sent follows as a 1 or a 0. Finally, the stop
bit is sent as a 1.

EE-41430 Fall 2007 Microcontroller Functions -53

Serial Data Format

Example: Suppose we are sending the ASCII for the
character “e”, which is 65,,. The bits sent would
look like:

The start bit signals the beginning of the
transmission, and the stop bit ends the
transmission.

EE-41430 Fall 2007 Microcontroller Functions -54

Logic Analyzer Trace

_‘ ’—‘ ’— Serial data
I I I I I I I I I I Data is: 00110000

000 1100 @ 30H
ASCII for the number 0

1g doy

Baud rate clock (not
present external to
the microcontroller)

|

EE-41430 Fall 2007 Microcontroller Functions -55

Serial Data Format

The example shown is for sending data with 8 bits
and no parity (referred to as 8-none). Another
possibility (since standard ASCII characters are
only 7 bits long) is to send 7 bits of data, and one
parity.

The parity can be set so that there are an even
(called even parity) or odd (called odd parity)
number of 1's in the transmission. This allows for
simple error checking.

EE-41430 Fall 2007 Microcontroller Functions -56

14

Serial Data Format

This form of serial communications is called
asynchronous, because there is no common
clock between the sender and the receiver.

The sender and receiver must be set to the same
“baud” rate. In its simplest form, the baud rate is
the number of bits sent per second.

9600 baud is 9600 bits per second.

Serial Data Format

At 9600 baud, each bit period is about 104 psec. The sender
sends bits for that length of time.

The receiver watches for the start bit. When that transition
occurs, it checks for bits based on its local clock,
checking the bit in the center of each period.

If the clocks are close enough, the checks won't drift out of
the correct bit period by the end of the reception.

EE-41430 Fall 2007 Microcontroller Functions -57

1.5 bit period 1 bit period

EE-41430 Fall 2007 Microcontroller Functions -58

Connectors and Line Format

The standard connector for a serial interface today
is the DB-9, a 9 pin connector. (Older serial
interfaces use DB-25 connectors.)

There are separate wires for transmit and receive, a
signal ground wire, and several flow control
signals. In most applications today, the flow
control signals can be ignored.

The two ends of the connection are called Data
Terminal Equipment (DTE) (e.g. a computer) and
Data Communications Equipment (DCE) (e.g. a
modem).

EE-41430 Fall 2007 Microcontroller Functions -59

Connectors and Line Format

If DCE is connected to DTE, a straight through cable
is used.

Modem Cable - Straight Cable DB9 to DB9
DTE to DCE

DTE Device (Computer) DBS Connections DCE Device (Madem) DB9
Ping DBY RS-232 Signal Names Signal Direction Pin# DBY RS-232 Signal Names
#1 Carrier Detector (DCD) [win] {}: #1 Carrier Detector (DCD) cD
#2 Receive Data (Rx) RO {): #2 Receive Data (Rx) RD
#3 Transmit Data (Tx) T : #3 Transmit Data (Tx) iIv]
#4 Data Terminal Ready DTR : #4 Data Terminal Reachy DTR
#5 Signal Ground/Common (SG) GhD | | 5 Signal Ground/Common (5G] GND
#6 Data Set Ready DSR : #6 Data Set Ready DSR
#7 Requestto Send RTS |———» [#7 Requesto Send RTS
#8 Clear to Send CcTs : #8 Clear to Send Cc1s
#9 Ring Indicator Rl Q: #9 Ring Inciicatar Rl
Soltered to DBS Metal - Shield EGND| —————. [Suldered to DES Metal - Shield FGND

EE-41430 Fall 2007 Microcontroller Functions -60

15

Connectors and Line Format

It is much less clear today what is DTE and what is
DCE, and it is not uncommon to connect like
devices over a serial link (computer to computer
for example.)

If this is the situation, the cable has to cross sighals
so that one ends transmit is connected to the
other ends receive, and vice versa.

Practical advice: If you serial link doesn’t work, and

the setup of each end is the same (baud rate,
number of bits, parity, flow control, etc.) try

swapping the wires on pins 2 and 3 on your cable.

EE-41430 Fall 2007 Microcontroller Functions -61

Connectors and Line Format

The actual signals sent are not 5 volt signals. RS-
232 sends a negative voltage (typically -12 volts)
to signify a“1” and a positive voltage (typically
+12 volts) to signify a “0”.

This used to be a pain, because it meant that in
addition to the 5 volt supply for you
microcontroller, you needed a +12 and a -12 volt
supply for the serial connection.

Modern technology has come to the rescue with a
device called the MAX232, which will take in a
signal that is 0 or 5 volts and put out a signal that
is +12 or -12 volts (using only a 5 volt supply!)

EE-41430 Fall 2007 Microcontroller Functions -62

The USART

USART stands for Universal Synchronous
Asynchronous Receiver transmitter. It is a
hardware device built into computers and
microcontrollers that accepts a byte from the
computer and shifts the byte our serially, and
accepts a serial set of bit and gives it to the
computer in parallel.

There is a USART inside the 18F4620, and it is a
common feature of microcontrollers. (Note that if
your application calls for a serial connection, you
should choose a microcontroller with a built in
USART.)

EE-41430 Fall 2007 Microcontroller Functions -63

The USART

The USART greatly simplifies the task of serial
communications. It is set up for the desired baud
rate and number of bits, and then the
microcontroller need only give it the byte to send,
and the USART does the rest.

On the receive side, the USART receives the serial
bit stream and gives the corresponding byte to
the microcontroller.

In the 18F4620 USART, the transmitter and receiver
are functionally separate, but share the same
baud rate generator

EE-41430 Fall 2007 Microcontroller Functions -64

16

Setting the Baud Rate

The baud rate is the speed with which the bits are
transmitted. Both ends of the serial connection
need to be set to the same baud rate.

There are a number of standard baud rates.

The baud rate in the 18F4620 is controlled by a
number of registers:

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name | Bit7 | Bite | Bits | Bit4 | Bita | Bitz | Bit1 | Bito Re:ﬁtp::;'z“
TXSTA CSRC | TX9 | TXEN | SYNC | SENDB | BRGH | TRMT | TX9D 51
RCSTA SPEN | RX9 | SREN | CREN | ADDEN | FERR | OERR | RX9D 51
BAUDCON | ABDOVF | RCIDL = SCKP | BRG16 | — WUE | ABDEN 51
SPBRGH |EUSART Baud Rate Generator Register High Byte . 51
SPERG :EUSART Baud Rate Generator Register Low Byte 51

Legend: — =unimplementad, read as '0". Shaded calls are not used by the BRG.

EE-41430 Fall 2007 Microcontroller Functions -65

Setting the Baud Rate

These table found in the documentation tell you how
to set SPBRG for the desired baud rate.

There is often more than one choice for a given rate,
so you should use the one with the smallest error.

SYHC =0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRGIG= 1
i FoSC = 40.000 MHz Fosc = 20.000 MHz Fosc = 10.000 MHz Fosc = 8.000 MHz
(K) | Actual w ~ SPBRG | Actual o SPBRG | Actual 5 SPBRG | Actual 4 SPBRG
Rate Error value Rate Error wvalue Rate Errer value Rate Error value
{K) {decimal)| (K} (decimaly | (K] {desimaly| (K]} [decimal)
03 0300 000 33332 0.300 0.00 18865 0.300 ooa 2332 300 o0 BEES
12 1200 000 332 1.200 0.02 4165 1.200 ooz 2082 1200 0.04 1665
24 2400 002 4165 | 2400 002 2082 | 2402 006 1040 2400 004 832
a8 0606 0.8 1040 0.508 003 520 8815 016 289 OE15 0.16 207
19.2 19193 -0.03 520 19.231 0.16 250 19.231 A1) 129 19230 £0.16 103
576 57.803 035 172 57471 022 86 58.140 094 42 57142 oTe 34
1152 | 114.942 0.22 a6 118.279 0.04 42 113,636 1.36 21 niea? 212 16

EE-41430 Fall 2007 Microcontroller Functions -66

The 18F4620 USART Transmitter

The transmitter of the USART looks like this. The
main function is to shift out a byte serially, and
this is done by the TSR register.

TXIF

TXIE

2 | s . e s i Pin Buffer SZ
| . | @ | | o | 0 and Conlrol

e S (e et ‘ e
TXEN | Baud Rate CLK } — |
) Py) [tamr| | spen|
|BRG]GH SPBRGH | SPBRG || Trrxs h I
S niiaccain o]

EE-41430 Fall 2007 Microcontroller Functions -67

The 18F4620 USART Transmitter

There are a number of interrupt flags, interrupt enables, and
other bits that are associated with the transmitter:
o TXEN — Transmitter Enable
e SPEN Serial Port Enable
e TXIF and TXIE — Transmit interrupt flag and enable
o TRMT — Transmitter empty (MT) flag
o RC6 — External pin on the 18F4620

JW— o {=E

P ™ pin
internpt |

. i
% [rur] [ooen]
Txso

Microcontroller Functions -68

THEN

Bawd Rabe CLK

" Gaud Rate Generator

EE-41430 Fall 2007

17

The 18F4620 USART Transmitter

Serial transmission looks like this:
Note:
e TXIF indicates that the TXREG is empty and can accept
another byte
e« TRMT indicates that the transmit shift register is empty.
o These are slightly different things.

Write to TXREG Wl"d : i¢
J
BRG Qutput o

(Shift Clock) ~ — = 1—T L1 __IT¢

RCEITXICK (pin) .

I . |
\START Bit < Bit0 BitT 3. Bit7/8 ,/5TOP Bit |
TXIF bit_ ' Word 1 ' 1
Transmit Buffer ' ot
eg. Empty Flag) I bR
i Word 1 — !
T-ﬁawr';.ﬁ'ﬂ Shift Transmit Shift Reg '
leq. Empty F\ag)—[¢ -
BRI
EE-41430 Fall 2007 Microcontroller Functions -69

The 18F4620 USART Transmitter

The difference between TRMT and TXIF can be seen
by looking at back to back serial transmissions.
The TXIF tells us that we can write another byte to
be sent to TXREG. (Note that we can either of
these flags, and don’t have to use interrupts.)

Wrile to TXREG I nl 55
BRG autput Word 1 Word 2

{shell clock) _l_l_!_l_l_l_l_l_l_g_[;_l_l_l_l_l —r L

—_— b:KL'K L N_Start 1 Bal BT TS K iTE ZSep Bt NSWtBt < Ein
(intemupt reg. fag) Lk WORD 1 —— e WORD 2
L 55
TRMT bit WORD 1 ——= WoRD2—
({Trarsmit shift T r
reg. empiy flag) Tan!m]n Shift Reg e Tranamit Shift Reg.
P

Neat: This timing diagram shows b ConSocutig Iansmissions

EE-41430 Fall 2007 Microcontroller Functions -70

18F4620 Transmitter Registers

The registers involved with serial transmission are:

e SPBRGH and SPBRGL — Get the correct value for the
desired baud rate based on the system clock speed and
BRGH.

e TXREG - Location to place a byte to be transmitted out
the serial port.

o TXSTA — Transmitter status register.

e RCSAT — Receiver status register. SPEN (serial port
enable bit is found here.)

e PIE1 and PIR1 — Peripheral Interrupt Enable register
and Peripheral Interrupt Register (home to TXIE and
TXIF respectively).

e INTCON - Global interrupt enable and peripheral
interrupt enable.

EE-41430 Fall 2007 Microcontroller Functions -71

18F4620 Transmitter Registers

TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Reset
Name Bit7 Bit6 BitS Bit4 Bit3 Bit2 Bit1 Bit0 | Values
on page
INTCON GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE REIE TMROIF | INTOIF REBIF 49
FIR1 PSPIFI ADIF RCIF TXIF SSPIF | CCP1IF | TMR2IF | TMRIIF 52
PIE1 PsPIE™ ADIE RCIE THIE SSPIE | CCP1IE | TMRZIE | TMRIIE 52
IPR1 PspIP ADIP RCIP TXIP SSPIP | CCP1IP | TMR2ZIP | TMR1IP 52
RCSTA SPEN RX8 SREN CREN ADDEN FERR QERR RX8D 51
TXREG EUSART Transmit Register 51
TXSTA CSRC T™>9 TXEN SYNC SENDB BRGH TRMT TX8D 51
BAUDCOM | ABDOVF | RCIDL — SCKP BRG18 — WUE ABDEN 51
SPERGH EUSART Baud Rate Generator Register High Byte 51
SPERG EUSART Baud Rate Generator Register Low Byte 51
EE-41430 Fall 2007 Microcontroller Functions -72

18

Transmitter Status Register

The main register for serial transmission is TXSTA.

REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER
RW-O RW-D RWO RWO RWO RWD R-1 RW-0
[csrc | Txe [TXEN | SYNC | SENDB | BRGH | TRMT | TX9D

it 7 kit 0
Eit7 GSRC: Clack Source Select bit PR3 SENDE: Send Sraak Chamca bt
Anyrchronous mode:
Agynchroncaus mode: 1= Send Sync Break on next ransmission (cheared by hardware upon completion]
Don't care. 0 ® Syre Bresk wanavsnon complened

Synchranous mode: Synchronous. merd;
rerrery
1 = Master mode (clock generated intemally from BRG) ;;":;_'H' s Fiste Satect
o = Slave mode {dlock from extemal source) e
nchronces mode:
kit 6 TX9: 9-bit Transmit Enable bit 1® High speed

1 = Selects 9-bit t-ansrmissicn s.r: mt:::ﬂ
= it b nctYnncus made:
0 = Selects 8-bit transmission e
kit5 TXEN: Transmit Enable bit BE1 TRMT: Trarsmit Shit Register Status bt
1 = Transmit enabled 1= TSR erpty
@ = Transmit disabled o= T5R Ml

bE0 TXOD: fth b of Transmit Data

Mote: SREN/CREN ovarrides TXEN in Syns mode Cary o acidrmeailatn bl paciy bl

EE-41430 Fall 2007 Microcontroller Functions -73

BAUDCON register

The BUADCON register is associated with both
transmit and receive.

REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER

RW-0 R-1 U0 R/W-0 RW-0 U-0 RW-0 R/W-0
ABDOVF | RCIDL | — SCkP | BRGIE | — WUE | ABDEN
bit 7 kit 0
B17 ABDOVF: Auto-Baud Acquistion Rolover Status bit ~ °*° BRCI 15Et B Rate Regsta i sa
1= ABRG rollover has occurred during Auto-Baud | o = -0t Baud Rate Generator - SPERG only (Compatiois mode], 5
(st be cleared in software) b2 Unimplemented: Foad as
9= NoBRG rellever has eccurred ba 1 WUE: Vinke-up Enabl bit
bt RCIDL: Receive Operation ldie Status bit Asynchonous mode:
1 = Receive operation is Idie + = ELIZART wil continue 8 sample the R pin - interrupt gener

cieared in hardware on following rising edge

o = Receive operabon is active 8= RX i nol meedered o rsing edge detectad

b5 Unimplemented: Read as ‘o' Synchrenous mode:
Bitd SCKP: Synchroncus Clock Polarity Select bit Uinitaelin this s,
b0 ABDEN: Auto-Baud Detect Enabla bit

Asynehronous mede:;

Asynchvonais ocs; .

Unused in this mode. 1 ® Enable baud rate measursment on the next characte:. Requies
Synchronous mode; (55h]; cleared in harchvare upon completon

1 = |dle state for clock (CK) is a high level o ® Baud rate measurement disabled or complated

o = Idle state for clock (CK) is a low level Synchrenous medec
Unused in this mode.

EE-41430 Fall 2007 Microcontroller Functions -74

Transmitter

To setup the serial transmitter:

e Set SPBRGH and SPBRGL based on the system clock,
and your choice of BRGH and BRG16.

e Set TXSTA for 8 bit asynchronous transmission with
the correct value of BRGH.

o Set the correct values into the BAUDCON register.
e Enable the serial port (bit SPEN found in RXSTA)
To send serial data:

e Be sure that the TXREG is empty (either by polling TXIF
or TRMT)

o Write the byte to be sent to TXREG.

EE-41430 Fall 2007 Microcontroller Functions -75

Transmitter and Interrupts

The determination of whether to use interrupts for
serial transmission depends on the application.

Interrupts are most useful when you are sending a
string of characters that you have already created.
If this is the case, you can design your software to
use the TXIF interrupt to load the next character in
the string and send it.

For many other applications, it is easier just to poll
either TXIF or TRMT.

If using interrupts, note that in addition to setting
TXIE to enable the TXIF interrupt, you need to
enable global interrupts (GIE) and also peripheral
interrupts (PIE).

EE-41430 Fall 2007 Microcontroller Functions -76

19

The 18F4620 USART Receiver

The receiver of the USART looks like this. The main function
is to shift in a byte serially, and this is done by the RSR
register.

FIGURE 18-6: EUSART RECEIVE BLOCK DIAGRAM

CREN |

x4 Baud Rale GLK

[ercte] {wencu

SPBERG

Baud Rale Generor 4

| I Pnbune [oaa]
and Control Recovery

RX r RXS0 RCREG Regster
FIFG:
SPEN
&
Intermupt Id 1 RCIF Data Bus
- RCIE
EE-41430 Fall 2007 Microcontroller Functions -77

The 18F4620 USART Receiver

The basic setup is the same as the transmitter.

e Baud rate is based on the same SPBRG value as the transmitter.
« Data shifts in serially, and can be read from RCREG.
o Datacomes in on external pin RC7.

« RCIE and RCIF are the Receiver Interrupt Enable and Receiver
Interrupt flag respectively.
FIGURE 18-6; EUSART RECEIVE BLOCK DIAGRAM

el J e | 0 [

A T) I [[T —

EE-41430 Fall 2007 Microcontroller Functions -78

The 18F4620 USART Receiver

The receiver is a little more complicated to deal with,
for several reasons:
« When a byte is appears in the register is not under the
control of the receiver, but depends on whatever is
sending the data.

e The receiver must be able to detect bad things that
might happen during transmission.

L EPesReE [cenn FERR
cAEN =
- SPERG PN DR B
- r=Y R Hagaier
|-t stoe|m| 7| ... |1 0|smAr
[.
Rt o L
T | .
SPEN {RXO0 ACREG Ragaser |
Fd
ey~ R * et
" ReiE . .
EE-41430 Fall 2007 Microcontroller Functions -79

The 18F4620 USART Receiver

Receiver Complications:

e Since an external source is determining when bytes are sent, the
microcontroller must be checking for data and reading it from the
receiver, otherwise an error called and “overrun” will occur. This
means that more bytes were received than can be held in the
receiver for your program to read, and thus you missed some data.

« Almost every USART stops receiving data when this happens, and
sets a flag (called the overrun error flag or OERR).

o If this occurs, you must reset the receiver to clear the error.

e To help this occur less frequently, the RCREG in the 18F4620 is a 2
byte FIFO (First In First Out) register that can hold to successive
receptions.

« Another type of error that can be detected is a framing error, where
the receiver doesn’t find the stop bit where it is expected. (This
often means a baud rate mismatch between transmitter and
receiver.

EE-41430 Fall 2007 Microcontroller Functions -80

20

The 18F4620 USART Receiver

Notice the framing error and overrun error flags, and
also that RCREG is actually a 2 byte FIFO.

FIGURE 18-6: EUSART RECEIVE BLOCK DIAGRAM

[=+— 5 [

x4 Baud Rale GLK

| J Peumer [oaa T
and Cantrol Recovery

X] RSO RCREG Register

FiFg

RO
Intermupt : 1 RCIF Data Bus
RCIE
EE-41430 Fall 2007 Microcontroller Functions -81

The 18F4620 USART Receiver

The timing diagram:

RX (i) —\31'*/7/‘:)-6 START — START -

b witd) bt)N Woag,/STOPY bt { oo) 5% Wearia /STOPY_bit [SN \Eire,/ sTOP

bt b , ba
Rev Shift e ce ce '
Reg . . ‘I[05 o .
o i e s ! -

Fead Rov cC .| RCREG c CC . M
s el ; oY ER =5
RCREG . H
RCIF e . £C 4d :

{Irsernupt Flag) p 7 \3. o
OERA bit L (J' (_} ¢ —
REN - Cc L L j
CRE 55 Sy 5 £

Hote: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,
causing the CERR (overrun) bit to be set.

EE-41430 Fall 2007 Microcontroller Functions -82

18F4620 Receiver Registers

The registers involved with serial reception are:

e SPBRGH and SPBRGL — Gets the correct value for the
desired baud rate based on the system clock speed and
BRGH.

e RCREG - 2 byte FIFO that hold the received data for
reading by the microcontroller.

¢ RCSTA — Receiver status register.

e TXSTA — Home of BRGH

e PIE1 and PIR1 — Peripheral Interrupt Enable register
and Peripheral Interrupt Register (home to TXIE and
TXIF respectively).

e INTCON — Global interrupt enable (GIE) and peripheral
interrupt enable (PIE).

EE-41430 Fall 2007 Microcontroller Functions -83

18F4620 Receiver Registers

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Reset
Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 | Values
on page
INTCON | GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE | RBIE | TMROIF | INTOIF | REIF 435
FIR1 psPIFl | ADIF RCIF TXIF SSPIF | CCPIIF | TMR2IF | TMR1IF 52
PIE1 PSPIE' | ADIE RCIE TXIE SSPIE | CCPMIE | TMR2E | TMRIIE 52
IPR1 PSPIPIT | ADIP RCIP TXIP SSPIP | CCPIP | TMR2IP | TMR1IP | 52
RCSTA SPEN RX8 SREM | CREN | ADDEN | FERR | CERR | RXSD 51
RCREG EUSART Receive Register 51
THSTA CSRC | TX9 | TXEN | SYNC [SENDB | BRGH | TRMT [TXeD 51
BAUDCON |ABDOVF | RCIDL | — | SCKP | BRG16 | — | WUE | ABDEN | 51
SPBRGH EUSART Baud Rate Generator Register High Byte 51
SPBRG EUSART Baud Rate Generator Register Low Byte 51
EE-41430 Fall 2007 Microcontroller Functions -84

21

Receiver Status Register
The main register for serial reception is TXSTA.

RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

RW-0 RW-0 RAN-0 RAW-0 RAW-0 R-0 R-0 R-x
SPEN | RX8 | SREM | CREM | ADDEN | FERR | OERR | RXSD
Bty Dt

bit7 SPEN: Serial Port Enable bit

1 = Serial port enabled (configures RCT/RM/DT and RCETX/CK pins as serial port ping)
o = Serial port disabled
bits RX9: -bit Receive Enable bit
1 = Selacts 9-bit reception
o = Selects B-bit reception
bit & SREN: Single Receive Enable bit
Asynchronous mode:
Don't care
SyYnchronous mode - master
1 = Enables single receive
0 = Disables single recaive
This bit is cleared after reception is complete.
Synchronous mede - slave:
Don't care
bit 4 CREN: Continucus Receive Enable bit
Asynchronous mode:
1 = Enables continuwous receive
o = Disables continuous receive

EE-41430 Fall 2007 Microcontroller Functions -85

Receiver Status Register

The main register for serial reception is TXSTA.
RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

RAW-0 R/W-0 R/W-D RW-0 RW-D R-0 R-0 R-x

SPEN | RX9 | SREN | CREN [ADDEN | FERR | OERR | RX9D
bit T bt
bit3 ADDEN: Address Detect Enable bit

Asynchronous mode S=bit (RXS =15
1 = Enables address detection, enables interrupt and load of the receive buffer when
RSR is sat

o = Disables address detection. all bytes are recelved, and ninth bit can be used as parity bit
bit2 FERR: Framing Error bit

1 = Framing grrer (can be updated by reading RCREG register and receive next valid byte)

0 = Na framing error
bit1 QERR: Overrun Error bit

1= Owvarrun errer (can be cleared by clearing bit CREN)

0 = Mo overrun ermor

pito RX9D: 5th bit of Recaived Data (can be parity bit, but must be calculated by user firmware)

EE-41430 Fall 2007 Microcontroller Functions -86

Receiver

To setup the serial receiver:

e Set SPBRG based on the system clock, and your
choice of BRGH.

e Be sure BRGH is set appropriately (in TXSTA).

e Set RXSTA for 8 bit asynchronous transmission and
enable the serial port (SPEN)

To receive serial data:

« Wait for data to appear (you can use interrupts or poll
the RCIF)

¢ Read data from the RCREG.

e Be sure your software can deal with errors (overrun
and framing, particularly the former.)

EE-41430 Fall 2007 Microcontroller Functions -87

Receiver and Interrupts

The determination of whether to use interrupts for serial
reception depends on the application, but it is often more
advantageous in reception, since the microcontroller does
not know when data is going to occur.

For some applications, it is easier just to poll either RCIF to
see when data is available.

Itis wise to avoid turning on data reception until you are
ready to handle it, otherwise overrun errors may occur.

It is also wise to check for that error as part of your routine,
particularly if you are polling RCIF.

If using interrupts, note that in addition to setting RCIE to
enable the RCIF interrupt, you need to enable global
interrupts (GIE) and also peripheral interrupts (PIE).

EE-41430 Fall 2007 Microcontroller Functions -88

22

Serial I/0 Software

Using the USART functions on a microcontroller, we
can write software routines the do the basic
functions of writing and reading characters to and
from the serial port. We will assume that we are
talking to aterminal application.

We need three low level routines:

¢ Initialize the USART
e putc() -- send a character out on the usart
e getc() -- gets a character from the usart

We have already discussed the registers that need

to be set up in the init routine.

EE-41430 Fall 2007 Microcontroller Functions -89

putc

This function sends a character to the terminal.

It is logical to have the prototype be:
e void putc(char dat)

xmit ready
for another
character?

no

test
TXIF in pirl
or
TRMT in txsta

send character
return

7

txreg = dat;

EE-41430 Fall 2007 Microcontroller Functions -90

getc

This function gets a character to the terminal.

It is logical to have the prototype be:
e char getc(void)

character
available
in buffer?

no

test
RCIF in pirl

get character

EE-41430 Fall 2007 Microcontroller Functions -91

dat = rcreg;

putc(dat);

return dat;

Bit Variables

The compiler allows you to define bits. For example,
TXIF is a bit in PIR1 that indicates that the
transmit register can be written to.

We can define this as a bit as:
volatile bit txif@pirl.4
We can then use this like any variable

if (xif) ...

EE-41430 Fall 2007 Microcontroller Functions -92

23

Bits

Warning: The system.h file defines bit names

associated with all these registers as follows:
//////7 PI\RL Bits /////777/777/777//77//77//77///77//777/7

#define TMR1IF
#define TMR2IF
#define CCP1IF
#define SSPIF
#define TXIF
#define RCIF
#define ADIF
#define PSPIF

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007

Note that these are simply offsets that indicate the
position in the register of the bit.

EE-41430 Fall 2007

Microcontroller Functions -93

Bits

The C code if (TXIF) is equivalentto if (4)
which is always true.

These definitions are for using the complier
supplied functions such as set_bit

//Helper macros

#define clear_bit(reg, bitNumb) ((reg) &= ~(1 << (bitNumb)))
#define set_bit(reg, bitNumb) ((reg) |= (@ << (bitNumb)))
#define test_bit(reg, bitNumb) ((reg) & (1 << (bitNumb)))

EE-41430 Fall 2007 Microcontroller Functions -94

Advice

The following code snippets do the same thing:

volatile bit tbmt@pirl.4

if(tbmt) ...
and

if (pirl & (1 << 4)) ...

If you every want me to look at your code and help
you find a bug, use the former.

EE-41430 Fall 2007

Microcontroller Functions -95

Outline

* Lab 5 preview

* Functions

» Interrupts

¢ Timer/counters

¢ A/D Conversion

Serial I/O0

Pulse Width Modulation
Parallel I/0O

EE-41430 Fall 2007 Microcontroller Functions -96

24

Interrupts

A special kind of function is the interrupt function.

An interrupt is a signal that an event (in our context,
and event that happened in the hardware) has
occurred.

The interrupt function is the software that reacts to
that hardware occurrence.

We are going to first talk a little about what can
generate an interrupt in our microcontroller, and
then more specifically about handling the
interrupts that occur.

EE-41430 Fall 2007 Microcontroller Functions -97

Why Use Interrupts

Interrupts are most useful for events that happen
asynchronously.

Suppose our project has a sensor that detects when
the cup has been removed from the automatic
drink dispenser. We could have our software in a
look constantly checking this switch.

Often, however, there are other things that we need
to be doing, so a better approach might be to use
interrupts.

EE-41430 Fall 2007 Microcontroller Functions -98

18F4620 Interrupts

There are lots of things that can generate an
interrupt on the 4620. These include events such
as atimer turning over (counting from FFFF to
0000), a character arriving in the USART, etc.

There are also certain port bits that have interrupt
functions associated with them so that an
external event can cause the interrupt.

The interupts in this device are divided into two
groups, regular interrupts and peripheral
interrupts.

There is also now priority associated with the
interrupts.

EE-41430 Fall 2007 Microcontroller Functions -99

18F4620 Interrupts

How do | know if the interrupt | want to use is
peripheral or not? Read the damn manual! (oops,
sorry!)

Case: USART receive:

o We saw that the RCIF (Receive interrupt flag) occurred
when a character shows up in the usart.

e Looking at the manual, we can see that this is a
peripheral interrupt because of the name of the register
in which it lives and the requirement of PEIE (Peripheral
interrupt enable) be set as can be seen in the manual.

INTCON GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE RBIE TMROIF | INTOIF RBIF
PIR1 PspPIF™ ADIF RCIF TXIF SSPIF | CCPIIF | TMR2IF | TMRIIF
PIET pspi!! ADIE RCIE TXIE SSPIE | CCP1IE | TMR2IE | TMR1IE
IPR1 pspipl ADIP RCIP TXIP SSPIP CCP1IP | TMRZIP | TMR1IP
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

EE-41430 Fall 2007 Microcontroller Functions -100

25

18F4620 Interrupts

Case: INT1:

e Bit 1 of port B can be set up as an edge triggered
interrupt. (Edge triggered means that the interrupt
occurs on the transition of the signal from one logic
lever to the other. Which transition is configurable.)

e INT1is controlled by bits in the registers shown below.

High Priority Interrupts in the 4620

Wake-up if in
Idle or Skeep modes.

e

INTOIF
INTHE
Intermupt to CRL

I‘HI”E WVeclor to Location
S5PIF INTII oo
SERIE 1 INT2IF

SSAIP INT2IE
INT2IP

ADIF
ADIE
ADIE

RCIE
RCIE

=D

IPEMN

LD

1D

GIEHIGIE

|]
PORTE rE7 | RBS RBS | RE4 RE3 I RE2 |\ RE1)] RED
LATB PORTB Data Latch Register (Read and Write to Data Latch) ~—
TRISB RTE Direction Contrel Register
INTCON \GIE/GIEH/ [PEIEIGIEL | INTOIE | RBIE | TMROIF | INTOIF | RBIF
INTCON2 FERQQ | (NTEDGT |JNTEDG2| S — N TMROIP | — [/RBPN

|
| IPEN _D_
REIP D - GIELPEIE

INTCONS INT2IP QNTHP

ADCON1T —

— | vera

=

INTZIE
VCFGO

‘ INT1IE _— INTZIF ‘ INTHIF
PCFG2 | PCFG1

EE-41430 Fall 2007

wration

O

Additional Peripheral Intenmupls

O

Microcontroller Functions -101

EE-41430 Fall 2007

o)

Microcontroller Functions -102

Low Priority Interrupts in the 4620

Additonal Pergphoral Inlemapts

EE-41430 Fall 2007

) Intormupt o CPU
TMROE ¢ Vecter 13 Locaon
1 0018h
T — R
RBIF——] }—: [-
REIE — o J
RBIP ——" GIEHIGIE
GIELPEIE
INTAIF
INTIE |
INTIE =
INTZIF
mr:ur:]
INT2IP

Microcontroller Functions -103

18F4620 Interrupts

Why so many bits associated with an interrupt?
Here’s the code:
o xxxIFis the Interrupt Flag. A bit that gets set when the

interrupting event occurs. Note that interrupts don’t
have to be enabled for the bit to get set.

o XxxIE is the Interrupt Enable. For an event to interrupt
the processor, it must be enabled.

o xxxP is set to indicate whether the interrupt is high
Priority or low priority.

To have an event interrupt the processor, you must
have the interrupt enabled, global interrupts
enabled, and if it is a peripheral interrupt,
peripheral interupts enabled.

EE-41430 Fall 2007 Microcontroller Functions -104

26

Interrupts

REGISTER 9.1: INTCON: INTERRUPT CONTROL REGISTER
RAW-0 R0 RIND R0 RIN-0 N0 SN0 A3

GIE'GIER | PFEIE/GIEL | TMROIE | INTOIE R3IE TMROIF | INTDIF R3IF

bt7 =4

@

GIE/GIEH: Slobal Interrup: Enable bit
Whan PEN = 0
1 = Enabies all unmasked interrupts
o = Disables al nterrupts
1 = Enables il high peiority interusts
o = Disables al ntermupts
wt§ PEIEGIEL: Peripheral Interrupt Enable ot
1 = Enables all unmasked perpheral intemupts
11 = Disables al sarpheral inermupts
When IPEN = 1;
1 = Enables all low pricrity peripneral ntermupts
0= Disables al ow priodty seripheral inmemunts
REGISTER 4-1: RCON: RESET CONTROL REGISTER
w0 WA ug RAW-1 Rl R4 Rw0R Rawg
wen [ssomen| — [m | 1o | Pom Bor_ |
ity wRo

bit7 IPEN: Interrupt Pricrity Enable bit
1 = Enaible priority levets on intemupts
@ = Disable priority levels on interupls (PIC 16000 Compaticily mode)

EE-41430 Fall 2007 Microcontroller Functions -105

Interrupts

|PEN, GlEH, and PEIE Wake-up f in

- Idle or Sleep modes

. TMROI

control interrupts w0))~

in bulk. RBIE |
RBIP
INTOIF
INTOIE Interrupt ta CRU

INT1IE n .
INTTIE —l—) Vector io Location
INT1IP E 3:}]‘].’!
INT2IF D -—
INTZIE

NTZIP

GIEHIGIE

IPEN—)
L/
IPEN D
GIELPEIE £

. IPEN —|C1)

EE-41430 Fall 2007 Microcontroller Functions -106

Handling Interrupts in Software

There are several things you need to do to use an
interrupt:

e Setup the particular hardware function to generate an
interrupt.

e Enable that specific hardware interrupt to occur.
e Enable interrupts in general to occur (GEI).

e Perhaps enable peripheral interrupts (PEIE)

e Set IPEN as desired.

o Write software to do what you need to do when the
interrupt occurs

51430 Fall 2007 Microcontroller Functions -107

Handling Interrupts in Software

There is a predefined function called interrupt which

is declared:
void interrupt (void);

Upon interrupt, the software execution switches
from whatever it was doing, and executes this
function. This works like any other function call,
except it occurs asynchronously based on some
hardware event, not because it was called by a
line in your program.

The interrupt routine should precede the main
routine in your code.

EE-41430 Fall 2007 Microcontroller Functions -108

27

Handling Interrupts in Software

Notice that there are no arguments and nothing is
returned.
void interrupt (void);
The interrupt routine will be able to access all of the
variables defined in system.h since these are
global variables.

If there are other variables that you want your
interrupt routine and your main routine to share,
you will have to make them global also.

EE-41430 Fall 2007 Microcontroller Functions -109

Generic Interrupt Routine

Consider using both RBIF and INT1. The general form of your
interrupt routine would include:

void interrupt(void)

if (rcif) // see if receive char interrupt

{
rcif = 0; // clear interrupt bit
// do the interrupt stuff for rcif

-

if (intl) // see if interrupt intl caused

~

intl = 0; // clear interrupt bit
// do the interrupt stuff for intl
}
3

EE-41430 Fall 2007 Microcontroller Functions -110

Generic Interrupt Routine

Note that | am using bit variables to make my life
easier. | would define

volatile bit rcif@pirl.5
volatile bit intlif@intcon3.1

PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

RW-0 RMW-0 R0 R0 RW-0 RW-D RWO RW-O
PSPIF | ADIF RCIF [TXF | SSPIF_| CCP1IF | TMR2IF | TMRIIF
bit 7 bit 0

INTCONJ: INTERRUPT CONTROL REGISTER 3

RW-1 Rl u-0 R0 RAW-0 -0 RW-D RAWD
[wT2ie T TP | [nT2E T NTHE | [wr2F [NTiF |
it 7 B0

EE-41430 Fall 2007 Microcontroller Functions -111

Generic Interrupt Routine

I may be strange but | think it is easier and produces
more readable code if you do:

if (rcif) // see if receive char interrupt

{
rcif = 0; // clear interrupt bit

rather than

it (pirl & 0x20) // see if receive char int

{
pirl &= 11011111b; // clear interrupt bit

EE-41430 Fall 2007 Microcontroller Functions -112

28

Interrupt Routine Comments

We need to have our interrupt routine determine
which interrupt caused it to get there. We are only
using one here, but it is good practice.

The interrupt routine needs to clear the interrupt flag
that caused the interrupt. If not, upon exit from the
interrupt routine, the flag would still be set and
the interrupt would occur immediately!!!

EE-41430 Fall 2007 Microcontroller Functions -113

Outline

* Lab 5 preview

* Functions

* Interrupts

» Timer/counters
* A/D Conversion
¢ Serial I/0

¢ Parallel I/O

EE-41430 Fall 2007 Microcontroller Functions -114

Timer / Counters

A timer / counter is a register inside the
microcontroller that increments.

If it increments based on the system clock it is
called atimer.

If it increments based on some external signal, it is
called a counter.

As atimer, the register will allow you to determine
how long an event was.

As a counter, the register will allow you to determine
how many events occurred.

EE-41430 Fall 2007 Microcontroller Functions -115

Counter Application

Suppose you are precisely positioning something
via a motor turning a screw drive. An shaft
encoder can give you a pulse for every nt" of a
turn the shaft makes.

By counting these pulses, you can determine the
position.

Note that one of the functions related to
timer/counters is a compare function, which can
be combined with a counter to tell you when a
particular value of the count is reached.

EE-41430 Fall 2007 Microcontroller Functions -116

29

Timer O in the 4620

Timer 0 looks like this. Clock source is either an external

signal (TOCLK) or the system clock (FOSC/4). (TOCS
decides which.)

There is a pre-scaler, which can further divide the clock rate.

FIGURE 11-1: TIMERO BLOCK DIAGRAM (8-BIT MODE)

Fasci

wﬁm [))-’)
TosE
TocS
TORSZTORSO
Pha

Programmatie
Prescaler

Syne wilh Set
internal [THMROL]—- TMROIF
Glocks an Overiow

{2 Tev Detay)

“u Intemal Data Bus

Mote: Upon Resel Timer is enabied in B-bd mode wilh cack input from TOGKI max. prescale

EE-41430 Fall 2007 Microcontroller Functions -117

Timer O in the 4620

Finally, the signal goes to the TMRO register, and
when it overflows (switches from FF to 00) an
interrupt occurs.

FIGURE 11-1: TIMERO BELOCK DIAGRAM (8-BIT MODE)

Fasci

AT Sync wath Set
_) Intemnal [THRL]—- TMROIF
TOCKI et | 1l Programmanie Chcks on Overfiow

Frescaler

ToSE (2 Tev Detay)

T0CS o

TOPS2 TOPS0 sl

L) {fi o Infernal Daka Bus

Mote: Upon Resel Timerd & enabied in 5-Lil mode with dock input from TOGK! max. prescake

EE-41430 Fall 2007 Microcontroller Functions -118

Timer O in the 4620

There is also a 16 bit mode for this timer. 16 bits
allows for a longer count

FIGURE 11-2: TIMERO BLOCK DIAGRAM (16-BIT MODE)

Foscra \
1
SZ N Syne wih 56
)} >] Intena an Byle TM[IJCIII-
Tock! i ﬁ.LF Clacks e

|_[Programenatie | | o on Crerflow
TosE jL'»/ (2 Tev Detay)
TGS 3
TOPSZ. TOPSO

PEA

Read THROL
Wite TMROL

8
" Inernal Data Bus

Note: Upon Resel, TimerD is enabled in 8-bil mode with clock input from TOCKI max, prescale

EE-41430 Fall 2007 Microcontroller Functions -119

Timer O setup
Registers/Bits associated with timer 0.

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMERO

[Reset

Name Bit7 Bit 6 Bits | Bit4 | Bit3 Bit 2 Bit 1 BitD | Values

on page
TMROL Timerd Register Low Byte 50
TMROH Timerd Register High Byte 50
INTCON | GIE/GIEH [PEIE/GIEL] TMROIE | INTOIE | RBIE | TMROIF [INTOIF [RBIF 48
TOCON | TMROOM | ToeBIT | Tocs | TosE | Psa | ToPsz [ToPs1 [TOPSO 50

INTCONZ: INTERRUPT CONTROL REGISTER 2

RW-1 R/AW-1 RW-1 R/W-1 uU-0 R/W-1 uU-0 RW-1
REPU | INTEDGO | INTEDG1 | INTEDG2 -_ TMROIP — REIP
bit 7 bit 0

EE-41430 Fall 2007 Microcontroller Functions -120

30

Setting up a Timer

REGISTER 11-1: TOCON: TIMERO CONTROL REGISTER
RAN-1 RWi-1 R-1 RW-1 RAY-1 A1 RW-1 RAW-1
TMROON | TOZBIT | TOCS TOEE P24 TOPS2 | TOPS1 | TOPSO
AT b0

Bit7 TMROON: Timerd On/Off Control bit
1 = Enakies TimerD
0 = Sops Teneel
Bitd TOBBIT Temerd &-biv/16-bit Conral bit

Bits TOCS: TimerD Ciock Sowrce Seieci bit
1 = Transition on TOCKI pin

1 = Incremwnt on high-to-iow ransition on TOCK pin

@ = Incramant on lowsta-high tranaition on TOCKI pin
bit3 PSA: Timer() Prescaler Assignment bit

1= TimerD prescaier is NOT assigned. TimerD clock input bypasses prescaler.

o = TirnaeD proscaler is assigned. TimerD clack input comes from prascaler cutput
Bit 2-0 TOPSZ:TOPSD: TimerD Prescaler Select bits

1 58 Prescale value
26 Prescale value
€4 Prescale vake

2 Prescale vale

Prescale value

EE-41430 Fall 2007 Microcontroller Functions -121

Timers

There are three other timers available in the
18F4620. They are either 8 or 16 bit timers. Each
has a similar setup to timer 0.

There is also a watch dog timer that has a period
that can be set from 4 msec to 131 seconds.

The WDT can be used to recover from the main code
loop getting hung.

It can also be used to wake up the processor from
sleep mode (a low power consumption mode).

The default is for the WDT to be enabled.

EE-41430 Fall 2007 Microcontroller Functions -122

Tasks 5 and 6

Tasks 5 and 6 involve timers and interrupts.

Task 5 starts with a single interrupt timer
combination, with task 6 adding a second.

Issues:

e You will have to set up timer O to provide one interrupt
per second. This involves getting the timer set up
correctly, with the correct pre-scale and loading the
correct value into the count register.

o Set all the bits correctly so that the processor can be
interrupted.

e Limitations of the compiler.

EE-41430 Fall 2007 Microcontroller Functions -123

Tasks 5 and 6

The compiler does not allow you to call a function
from two different execution threads. Thus, if you
are using the LCD in the main program, you can’t
use it as part of your interrupt service routing.

You don’t have to worry about using priority in the
interrupts. The default is to have a single priority
and that will work fine in tasks 5 and 6.

EE-41430 Fall 2007 Microcontroller Functions -124

31

Tasks 5 and 6

Use semaphores (aka flags) to communicate
between interrupt service routine and main
program.

o Interrupt routine sets a flag (global) when the interrupt
occurs.

e Main program is watching for the flag to be set:
— Takes the appropriate action
— Clears the flag.
Be sure and clear the interrupt flag or you will re-
interrupt as soon as you return to the main
program.

EE-41430 Fall 2007 Microcontroller Functions -125

Tasks 5 and 6

To see if you are getting an interrupt you can:
e Increment and display a value on portd (the LED’s)
e Use the logic analyzer.

/* setup bit al as an output and define

a macro to toggle the bit */
volatile bit al@PORTA.1; // name bit porta bit 1
#define toggle_al al=1; nop(); al=0; // define toggle
trisa.l = 0; // make port a bit 1 output
al=0; // start at zero

e With this code included in your program, you can make
bit 1 of port atoggle with the statement

toggle_al;

EE-41430 Fall 2007 Microcontroller Functions -126

SPI Interface

Many microcontrollers have other serial interfaces built into
their hardware.

Common ones include 12C (Inter-Integrated Circuit) and SPI
(Serial Peripheral Interface).

In the Microchip microcontrollers, these are part of the same
hardware called a Synchronous Serial Port.

These interfaces typically have a single master and some
number of slave devices.

It is called synchronous because the two communicating
devices share a common clock provided by the master
device.

Since the Chipcon part uses an SPl interface, we will talk
about that in a little detail.

EE-41430 Fall 2007 Microcontroller Functions -127

SPI Interface

The basic idea of an SPI interface is to share information
over a serial connection. It looks like the picture below.

Note that the master is the source of the clock.

B00

| =01

Serial Input Buffer

(SSPBUF)

Serial Input Ruffer
(SSPBUF)

."I

Bl 500

Shift Register - Shuft Regesler
(SSPEH) (SEPER)
MSb LSk MSb L5h
| Seral Clock |
SCK ———— 5CK
Master Slave
EE-41430 Fall 2007 Microcontroller Functions -128

32

SPI Interface

Data is given to the buffers in parallel and is shifted across

the link in serial.

This is how communications is done with the CC2420, and
your are able to set various registers, and well as transfer
the information that is carried in messages between

ZigBee devices.

sDO | | s01
T]
1 1
Serial Input Buffer : : Serial Input Buffer
(SSPBUF) ! ' (SSPBUF)
] 1
ﬁ I I
1 1
1 1
Shift Register SO 1 530G Shift Register
(S5PER) ! ! (SSPSR)
MSh = ' ' MSD sb
ek | Senal Clock | ek
Master ! L Slave

EE-41430 Fall 2007

Microcontroller Functions -129

SPI Interface

A more detailed view of
the hardware is shown.

Note:

e Specific pins are used
for the various signals

e Theclock can be
generated based on the
system clock or an
internal timer.

e Numerous registers are
involved in the setup of
the device.

EE-41430 Fall 2007

Intermal
Data Bus

Read —!t[x ; ; Write

| SSPBLF reg |

X
RCASDUESDA

RCS/SDO

X<

RASANASE
HLVDINC2OUT TS Central
nable

Clock

a

Edge
Select

2
Clack Select
SSPMISSEMO
REVSCR SMP*%KE 444 (mmz})qu)

Edge
l;re‘s'galﬁir TosC
J)

;- Data to TXRX in SSPSR
TRIS bt

Microcontroller Functions -130

SPI Interface

Basic idea:

o (Master) When a byte is
written into the SSPBUF and
SSPSR, it gets shifted out on
the SDO pin using a clock that
is sent out on the SCK pin.

e (Slave) If the slave is selected,
it will receive the serial stream
and send back one of its own
(areply) that will show up in
the SSPBUF register.

o (Master) Read the returning
data.

EE-41430 Fall 2007

Roasoispa hp b
{2~ ssPsRey I—-
Re4SDO BA0 fe?
FAGAMASS! (77
HVBINCZOUT LI5S contrat
— Erable |
[TEa= | L
| Seka [~
Lf2
Clock Select
SSEMESEPM0
REYSOH P L_}"E 4'1.,‘_(_mn2 ::ng.)
5CL 42

Eoge

B J LSeed |7 | [Frescaer|Tosc
L aees

"} Data o THRX n SSPSR
1. TRIS be

Microcontroller Functions -131

SPI Interface to CC2420

4, j,
NplgNpligNaial|

L bu
J_J'JJ]_I_'_'JJ_I_IJ_.I_

iE N N () € KX CR) €0 (0 O O 09 (%) (X

X5 (XB N0 0 D O 4 D D ED OB Ty}
(S X% O %
| 5
S |
(o DD 0 58

EE-41430 Fall 2007

Microcontroller Functions -132

33

Registers for SPI

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION

Reset
MName Bit7 Bit & Bit § Bit4 Bit3 Bit2 Bit1 Bito Values
on page

INTCON | GIE/GIEH |PEIE/GIEL| TMROIE (INTOIE RBIE TMROIF I INTOIF] RBIF 49
PIR1 pspIFll ADIF RCIF TXIF SEPIF CCP1IF TMR2IF TMRTIF 52
FIE1 PSPIEM ADIE RCIE TXIE SSPIE CCP1IE | TMR2IE | TMR1IE 52
IFR1 pspIpl ADIP RCIP TXIP SSPIP CCP1IP | TMRZIP | TMR1IP 52
TRISA TRISATH | TRISAGH) |PORTA Data Direction Control Reqgister 52
TRISC PORTC Data Direction Cantrol Register 52
SSPBUF .SSP Recaive Buffer Transmit Register 50
SSPCON1T WCOL S5POV SSPEN CKP S5PM3 SS5PM2 | SSPM1 | SSPMO 50
SSPSTAT | SMP CKE DiA P S RW I UA | BF 50

Legend: Shaded calls are nol used by the MSSP m 5P mode,
Note 1: These bits are unimplemented on 28-pin dewces and read as o'’

2: PORTA<T 6> and their direction bils are individually configured as port pins based on various primary
oscillator modes, When disabled, these bils read as "0’

EE-41430 Fall 2007 Microcontroller Functions -133

SPI Options

FIGURE 17-3: SPI™ MODE MODE]}
Wite 1o
SSPRLF ‘
sCK
(CKP =0 I l
CHE =0}

:V‘<'r<'r‘ ”\, /wk(:
LSOO >< !
| S SN SR SNE B

t ot ot t

L‘ Mext G4 Cycle

EE-41430 Fall 2007 Microcontroller Functions -134

SPI Software

In a similar fashion to the USART, you should think
about having low level functions that initialize,
write, and read the SPI.

Initialization involves setting up the clock speed, the
edges used, etc.

Write and read are a little more complicated.
Essentially, to read something, you need to write

something.
We can see what's going on by looking at the timing
diagram.
EE-41430 Fall 2007 Microcontroller Functions -135

SPI Software

To write a register in the CC2420, you send a command that
includes bits that specify which register (A5 — AO).

The appropriate value would be written to the SSPBUF, and it
would automatically be shifted out.

As it is shifted out, a status byte is shifted in. When it is all
there, a flag will be set telling you that a byte is present
and needs to be read.

You read this byte, and then write in the high byte of the 16
bit word that is to be sent to the register.

s L Ao oo oo
[MI I. i -- - 4 4 4 [
50 (X‘:{« | 1] : |

EE-41430 Fall 2007 Microcontroller Functions -136

34

Analog to Digital Conversion

There are many sensors that measure an analog real
world value and produce a signal that is a voltage
or current that is proportional to the value being
measured.

Examples include:

e Strain Gauges
o Accelerometers
¢ Temperature Sensors

To use these external values as part of an
embedded control application, we need a way to
represents the value of the analog signal inside
the microcontroller.

EE-41430 Fall 2007 Microcontroller Functions -137

A/D in the 4620

The 18F4620 has a 10 bit successive approximation
converter.

The analog source can be selected from one of 13
different pins.

There is also the capability to select different
reference voltages which set the range of the
analog input (maximum and minimum values.)

As usual, there are a number of different registers
associated with using the A/D converter in the
device.

EE-41430 Fall 2007 Microcontroller Functions -138

A/D in the 4620

TABLE 19-2: REGISTERS ASSOCIATED WITH A/D OFERATION

Reant
Name Bit7 Bit8 Bits Bit4 Bit3 Bit2 Bit1 Bitd | values
on page
TCON | GICGICH [POICGICL] TMR0iC | INTOIC ROIE | THROK | 10N | RO 23
FIR1 PSP | ADIF RCIF THIF SSPIF | CCPIF | TMRZIF | TMRIIF | 52
PIE1 PSPIEM | ADIE RCIE TXIE SSPIE | CCPIIE | TMR2IE | TMRIIE | 52
iFRi FEFIFT | AGF R TR 3SFIF | COFIIF | TMRZIF | TRRTIF | G2
PIR2 OSCFIF | CMIF — EEIF BCLUF | HLVDIF | TMRYF | ccPaiF | 52
FIEZ OSCFIE | CMIE — EEIE BCLIE | HLVDIE | TMR3IE | CCF2IE | 52
rR2 OSCrIE | oain - =Er ECLP | HIVDX [TmRsT | coraiP | 82
ADRESH | A/D Resust Register High Byle 51
ADRESL | AD Resull Regisler Low Byte 51
ADCOND - — cHEZ cHS2 cHst | cuse lGODONE! apon 51
ADcoNt VCFG1 | VOFGD | PCFG3 | PCFG2 | PCFGI | PCFGO 1
ADCONZ ADFM —_ ACQT2 ACQTY ACQTO ADCS2 ADCEY ADCES0 51
FORTA ra7 | Ragt! RAS RAd RA3 RAZ RA1 RAD 52
TRISA [TRISAT?! [TRISA61 |PORTA Data Direction Control Realster 52
PORTB RBT RB6 RBS | RB4 | RB3 | RB2 | RB1_| RBO 52
TRISE |PORTE Data Direction Conirl Reqister 52
LATE PORTE Data Latch Register (Read and wWrite to Data Latcn) 52
PORTEW — — — — REIR RE2 l RE1 RED 52
TRISEW 1BF OBF Bov |PsPmopE| — TRIsE2 | TRISEY | TRISED 52
LaTE™ — — — — — |PORTE Data Latch Regester 52
EE-41430 Fall 2007 Microcontroller Functions -139

A/D in the 4620

Note:

e The analog signal must be allowed to settles before
doing the conversion.

e Since itis a successive approximation converter, it is
not the fastest converter in the world, and the
conversion time must be chosen based on the system
clock. (The device needs more cycles to convert (per
bit) as the system clock speed goes up.)

e Some external signals can be used as references.

e Pins used as analog inputs must be setup as analog.
(Note that analog is the default.)

EE-41430 Fall 2007 Microcontroller Functions -140

35

EE-41430 Fall 2007

A/D in the 4620

FIGURE 18-1; AD BLOCK DIAGRAM

B T

Microcontroller Functions -141

Takeaways

One bit set wrong can make something not work.
Use the tools you have to debug:

e You have a fairly complete set of routines that print to
the LCD display.

e You can easily make a similar set that prints to the
terminal.

o If you are not sure you are setting a register correctly,
print it out:

LCD_bin(rcsta);

For hardware issues, the logic analyzer helps

EE-41430 Fall 2007 Microcontroller Functions -151

36

