
1

Getting Started Kits

Kit Contents

Each kit has the following items:
• Board with microcontroller (18(L)F4620)

P b i k f th b d• Power brick for the board.
• Programmer, and power brick for programmer.
• USB logic analyzer
• Digital Volt Meter.
• Serial cable
• Needle nose and cutting pliers.

EE-41430 Fall 2007 Microcontroller Functions -2

Board

The schematic of the board is shown below:

EE-41430 Fall 2007 Microcontroller Functions -3

Board
Power Section:

EE-41430 Fall 2007 Microcontroller Functions -4

2

Board Layout

EE-41430 Fall 2007 Microcontroller Functions -5

Board Features

This is a general purpose board, that will accept
most of the 40 pin Microchip microcontrollers.

It h b ilt iIt has built in:
• Serial port interface
• LED’s on port D
• LCD interface (also on port D)
• Programmer interface
• Locations where an RTC chip and serial EEPROMS may

b dd d

EE-41430 Fall 2007 Microcontroller Functions -6

be added.

Board Features

The board has 2 voltage regulators on it, and you
can select to run the processor at either 3.3 or 5.0
volts (LCD gets 5 volts in any case)volts. (LCD gets 5 volts in any case.)

Your board might have either an 18LF4620 or an
18F4620.

Note: Only the 18LF4620 will run at 3.3 volts.
The processor has a simple program in it, which

writes to the LCD display, blinks the lights, and

EE-41430 Fall 2007 Microcontroller Functions -7

y g
then exercises the serial port.

Notes
Some of these boards were built by students in

previous years. No guarantees.
The programmer connection to the board may or

may not be keyed to prevent incorrect
connections. The edge of the connector towards
you is painted gold or silver. Incorrectly
connecting the programmer has the nasty habit of
blowing very small transistors on the board. I
have replacements, but you will be doing the

EE-41430 Fall 2007 Microcontroller Functions -8

repairs.
You should plan on ordering free sample

microcontrollers from Microchip, before you do
something that destroys the one you have.

3

Notes

The power brick used for the microcontroller board
is cheap and unregulated. Don’t expect the
voltage you get to be the voltage on the slidevoltage you get to be the voltage on the slide
switch.

You will want about 7 volts out of the power brick.
(In one of the tasks, you will determine why.) You
should use the meter to find the lowest setting of
the slide switch that gives you about 7 volts.

EE-41430 Fall 2007 Microcontroller Functions -9

There is a polarity switch on the power brick. It
should be to the left.

Notes

The USB logic analyzer software should be on the
machines in the ELC, (as should the rest of the
software used in this course)software used in this course.)

When connecting the logic analyzer, you can place
the leads directly over the header pins that are on
the board. This is far easier then the little clips.

Do not remove the leads from the logic analyzer to
use for jumpers. They are expensive ($60 to

EE-41430 Fall 2007 Microcontroller Functions -10

replace the set), and I lost too many in the past. (If
I see you doing this, you will loose your logic
analyzer and it is a very useful tool.)

18F4620 Microcontroller

R. M. Schafer
EE – Senior Design

Why this processor?

This processor is overkill for most projects. (More
memory and features than necessary.)

It k l t f t ithIt makes a lot of sense to use a processor with
excess capacity to develop your prototype.
(Why?)

EE-41430 Fall 2007 Microcontroller Functions -12

4

Device Features

Power Management:

EE-41430 Fall 2007 Microcontroller Functions -13

Device Features

Clock

EE-41430 Fall 2007 Microcontroller Functions -14

Device Features

Peripherals:

EE-41430 Fall 2007 Microcontroller Functions -15

Device Features

Peripherals:

EE-41430 Fall 2007 Microcontroller Functions -16

5

Configuration Bits

There are a number of what are called configuration
bits or fuses that are associated with the 18F4620.

Th bit th t t b h d d i thThese are bits that cannot be changed during the
running of the program, but can only be set when
the device is programmed.

These bits can either be set within the programmer
software, or using compiler directives.

The latter is a better approach.

EE-41430 Fall 2007 Microcontroller Functions -17

Configuration Bits
Configuration bits control a number of things and are discussed under

“Special Features of the CPU” in the documentation.

EE-41430 Fall 2007 Microcontroller Functions -18

Configuration Bits

These bits are set in pragma directives:

0 300001 OSC S 1 // S#pragma DATA 0x300001, _OSC_HS_1H // HS osc
#pragma DATA 0x300003, _WDT_OFF_2H // wdt off
#pragma DATA 0x300006, _LVP_OFF_4L // lvp off
#pragma DATA _CONFIG3H, _MCLRE_ON_3H //enable mclr

These are using definitions found in the system.h
include file.

EE-41430 Fall 2007 Microcontroller Functions -19

Configuration Bits
The location of the config register is defines:

#define CONFIG1H 0x00300001 # _
#define _CONFIG2L 0x00300002
#define _CONFIG2H 0x00300003
#define _CONFIG3H 0x00300005
#define _CONFIG4L 0x00300006

Various bit in the resisters are defined also:

EE-41430 Fall 2007 Microcontroller Functions -20

#define _OSC_HS_1H 0x000000F2 // HS
#define _OSC_RC_1H 0x000000F3 // RC
#define _OSC_EC_1H 0x000000F4 // EC-OSC2 as Clock Out
#define _OSC_ECIO6_1H 0x000000F5 // EC-OSC2 as RA6
#define _OSC_HSPLL_1H 0x000000F6 // HS-PLL Enabled

6

Configuration Bits
To turn off the watch dog timer:

#pragma DATA 0x300003 WDT OFF 2H#pragma DATA 0x300003, _WDT_OFF_2H

or
#pragma DATA _CONFIG2H, _WDT_OFF_2H

To set the oscillator to high speed and multiply the crystal
speed by 4:

EE-41430 Fall 2007 Microcontroller Functions -21

#pragma DATA 0x300001, _OSC_HSPLL_1H //40 mhz

Things like the latter should be done advisedly, because the
18LF4620 will not operate at 40 MHz at lower voltages.

Configuration Bits

I recommend that you:
• Turn off the watch dog timer, until you are sure that you

want to use itwant to use it.
• Turn off low voltage programming
• The boards that you will be using have 10MHz crystals

on them. You should set the oscillator to HS or HSPLL,
depending on the desired speed.

In addition, there is a pragma for the clock
frequency:

EE-41430 Fall 2007 Microcontroller Functions -22

frequency:
#pragma CLOCK_FREQ 10000000

This directive is necessary if you use any of the built
in delay routines, as the program needs to know
how fast the clock is.

18F4620 Ports

In the following slides, we will look at the ports (I/O)
available on the microcontroller form both an
electrical and software point of viewelectrical and software point of view.

EE-41430 Fall 2007 Microcontroller Functions -23

Port Electrical Characteristics

When connecting things to ports, we are concerned
with the current and voltage at the pins.

Th l t i l ifiThe electrical spec specifies:
• VIH – Voltage that will be interpreted as high on an input.
• VIL – Voltage that will be interpreted as low on an input
• VOH – Voltage on the pin in the output high state.
• VOL – Voltage on the pin in the output low state.
• IOH – Current a pin will source in the high output state.

EE-41430 Fall 2007 Microcontroller Functions -24

• IOL – Current a pin will sink in the low output state.
Note that as inputs, the impedance is very high, and thus

there is very little current into the device. This is called
“leakage” current and is on the order of 1μA.

7

The input voltages are the easiest, since the input impedance
is so high.

For the 4620 running at 5.0 volts, these are the values:

Port Electrical Characteristics

For the 4620 running at 5.0 volts, these are the values:

VIH minimum 2.0 volts

VIL maximum 0.8 volts

This means that the minimum voltage on an input pin

EE-41430 Fall 2007 Microcontroller Functions -25

g
that is guaranteed to be read as “high” is 2.0 volts,
and the maximum voltage on an input pin that is
guaranteed to be read as “low” is 0.8 volts.

Port Electrical Characteristics

EE-41430 Fall 2007 Microcontroller Functions -26

Outputs aren’t as easy, since we must consider both the
voltage and the current. For example, if we short an output
pin to ground, we shouldn’t expect it to produce a “high”

Port Electrical Characteristics

p g , p p g
output voltage.

VOH minimum 4.3 volts IOH < -3 mA

VOL maximum 0.6 volts IOL < 8.5 mA

The VOH spec says a high output will be a minimum of 4.3 volts
as long as the current out of the pin is less than 3 mA

EE-41430 Fall 2007 Microcontroller Functions -27

as long as the current out of the pin is less than 3 mA.
The VOL spec says a low output will be a maximum of 0.6 volts

as long as the current into the pin is less than 8.5 mA.
Note that current into the device is defined as positive.

Port Electrical Characteristics

EE-41430 Fall 2007 Microcontroller Functions -28

8

Remember that the output stage is a couple of
transistors. A MOSFET (in the triode operating
region) looks like a small resistor We should

Port Electrical Characteristics

region) looks like a small resistor. We should
expect a resistor like relationship between the
voltage and current at the pin.

gate
source

drain
P

+5 volts

EE-41430 Fall 2007 Microcontroller Functions -29

gate
drain

source
N

I/O
Port

In addition to sourcing 3.5 mA and sinking 8mA,
there is also a restriction on the total current
sourced or sunk by groups of I/O ports

Port Electrical Characteristics

sourced or sunk by groups of I/O ports.
Added together, the current sourced or sunk by all

ports combined can’t exceed 200 mA.
The absolute maximum information is found in the

device document.

EE-41430 Fall 2007 Microcontroller Functions -30

Port Electrical Characteristics

EE-41430 Fall 2007 Microcontroller Functions -31

18F4620 Ports

Many of the ports on
the 4620 have special
functions andfunctions, and
therefore have
different electronics,
but the basic port
looks like this:

EE-41430 Fall 2007 Microcontroller Functions -32

9

18F4620 Ports

There are two latches (flip-flops) associated with
each bit of the port.

The top one holds the data that is being output toThe top one holds the data that is being output to
the port.

The bottom one controls whether this bit is an input
or an output.

Holds the data being output

EE-41430 Fall 2007 Microcontroller Functions -33

Determines if the port is
an input port or an
output port.

18F4620 Ports

The tri-state gate lets ports be either outputs or
inputs.

EE-41430 Fall 2007 Microcontroller Functions -34

18F4620 Ports

To be used as an output, one or the other of the
transistors is on, allowing data to be sent to the
I/O pinI/O pin.

When both transistors are off, the “output” is
disconnected and the input can be read.

EE-41430 Fall 2007 Microcontroller Functions -35

18F4620 Ports

Note: There are a
variety of read and
write signals that dowrite signals that do
different thing.

EE-41430 Fall 2007 Microcontroller Functions -36

10

Basic I/O

So how do I uses these ports in a C program?

There are three registers associated with each I/OThere are three registers associated with each I/O
port. They are called:
• port
• lat
• tris

Tris is the register associated with the direction
(input or output of the pin)

EE-41430 Fall 2007 Microcontroller Functions -37

(input or output of the pin)
Port is where your read from to see what the inputs

are.
Lat is where you write to (does the same thing as

writing to port)

Basic I/O
Note that the device does a read-modify-write. That means

that the state of the port is first read, then it is modified,
then it is reloaded into the register.

In some circumstances, this can cause issues if you are
iti d i di t l di d th i l h ’t h dwriting and immediately reading and the signal hasn’t had

a chance to settle.

EE-41430 Fall 2007 Microcontroller Functions -38

4620 Ports

The 4620 has:
• 4 8-bit ports named a, b, c, and d.

O 3 bit t d• One 3-bit port named e.
Thus there is, associated with port a, three 8-bit

registers:
• porta
• trisa
• lata

EE-41430 Fall 2007 Microcontroller Functions -39

The same is true, mutatis mutandis, for the other
ports.

4620 Ports

The registers associated with
each port (and all of the rest of
the registers that we willthe registers that we will
discuss) are memory mapped
into particular locations.

Fortunately, the header file
<system.h> makes it easy to
use these memory mapped
registers

EE-41430 Fall 2007 Microcontroller Functions -40

registers.

11

system.h
The system.h file defines register names (in all caps) as:

#define PORTA 0x00000F80
#define PORTB 0x00000F81
#define PORTC 0x00000F82
#define PORTD 0x00000F83
#define PORTE 0x00000F84
#define LATA 0x00000F89
#define LATB 0x00000F8A
#define LATC 0x00000F8B
#define LATD 0x00000F8C
#define LATE 0x00000F8D
#define DDRA 0x00000F92
#define TRISA 0x00000F92
#define DDRB 0x00000F93

EE-41430 Fall 2007 Microcontroller Functions -41

#define DDRB 0x00000F93
#define TRISB 0x00000F93
#define DDRC 0x00000F94
#define TRISC 0x00000F94
#define DDRD 0x00000F95
#define TRISD 0x00000F95
#define DDRE 0x00000F96

system.h
The system.h file defines registers in lower case using

volatile char porta @PORTA;
volatile char portb @PORTB;
volatile char portc @PORTC;
volatile char portd @PORTD;
volatile char porte @PORTE;
volatile char lata @LATA;
volatile char latb @LATB;
volatile char latc @LATC;
volatile char latd @LATD;
volatile char late @LATE;
volatile char ddra @DDRA;
volatile char trisa @DDRA;
volatile char ddrb @DDRB;
volatile char trisb @DDRB;

EE-41430 Fall 2007 Microcontroller Functions -42

volatile char trisb @DDRB;
volatile char ddrc @DDRC;
volatile char trisc @DDRC;
volatile char ddrd @DDRD;
volatile char trisd @DDRD;
volatile char ddre @DDRE;
volatile char trise @DDRE;

system.h
The net effect is that registers names (in

lower case) can be used as ordinary
variablesvariables.

This is true of all of the registers, not just the
registers associated with the ports.

EE-41430 Fall 2007 Microcontroller Functions -43

Parallel I/O

Suppose we have LED’s connected to port a on the
microcontroller. If we wish to send the value of a
variable data to the LED’s we need to do twovariable data to the LED s, we need to do two
things:
• Make port a into an output port
• Send the desired data to port a

In C, this is pretty trivial:
trisa = 0; // set all bits of port a output

EE-41430 Fall 2007 Microcontroller Functions -44

lata = data; // send data to the led’s

12

Parallel I/O

If we have an input device connected to bit 4 of port
b (such as a switch that will make the I/O pin 0 or
5 volts)5 volts)
• Make bit 4 of port b into an input
• Read in the data

Again, this is pretty trivial:
trisb |= 00010000b; // set bit 4 input
data = portb; // read in the port

EE-41430 Fall 2007 Microcontroller Functions -45

Note:
• reading portb reads the input lines; reading latb reads

the output latch.

Parallel I/O

EE-41430 Fall 2007 Microcontroller Functions -46

More Power!!!!
There will be many situations where the limited ability of an

output port to source/sink current is insufficient to drive
the output device being controlled, or the required voltage p g , q g
is higher than 5 volts.

Examples include:
• Higher current LEDs
• Turning motors on and off
• Activating relays, solenoids, etc.

The solutions to these problems is to use an external device
such as a transistor to provide sufficient current/voltage

EE-41430 Fall 2007 Microcontroller Functions -47

such as a transistor to provide sufficient current/voltage
for the device, and use the limited power of the
microcontroller output to turn the external device on and
off.

Serial I/O

One of the most common interfaces found on
computers is the serial interface.

B t f d t t i i l f hi th t iBytes of data are sent in a serial fashion, that is, one
bit at a time.

The standard for serial interface is called RS-232. It
is used to send data over distances on the order
of 25 feet.

It is gradually being replaced in modern computers

EE-41430 Fall 2007 Microcontroller Functions -48

g y g
by the faster and more flexible USB (Universal
Serial Bus) interface.

RS-232 is still very common, very simple to
implement, and well supported by software.

13

Serial I/O

Why worry about serial I/O in a microcontroller?
• There are many applications where either the major

function of an embedded system or an auxiliaryfunction of an embedded system, or an auxiliary
function, is the logging of data. Microcontrollers
typically don’t have enough memory to store significant
amounts of data, but a serial link can be used to allow a
laptop or other computer to log data sent to it by the
microcontroller.

• If you are developing software for an embedded control
application and do not have an integral display (such

EE-41430 Fall 2007 Microcontroller Functions -49

application, and do not have an integral display (such
as the LCD display on the systems we are using in the
lab), a serial connection allows data to be written to a
computer for debugging purposes. It is worth the little
extra hardware to have this ability.

Serial I/O

Why worry about serial I/O in a microcontroller?
• RS-232 is the simplest form of serial I/O, but there are

many other serial I/O standards that evolved from themany other serial I/O standards that evolved from the
desire to interface things to microcontrollers without
using up lots of I/O port pins.

• Other common serial interfaces are SPI (Serial
Peripheral Interface), I2C (Inter-Integrated Circuit), and
various other forms of one wire and three wire
interfaces.

EE-41430 Fall 2007 Microcontroller Functions -50

Serial I/O

There are several things that must be done to
connect a microcontroller to a computer.

You need an application running on the computer that• You need an application running on the computer that
can accept serial data. A commonly available
application is HyperTerminal, which is a simple
terminal emulation program that is standard software
on all PC’s.

• Data sent between the microcontroller and the
computer is sent using particular voltages (that are
diff t f th t d d lt f d

EE-41430 Fall 2007 Microcontroller Functions -51

different from the standard voltages found on a
microcontroller.) This requires level conversion.

• You need software in the microcontroller that will read
and write serial data.

Serial Data Format

If a data byte with the bits labeled b7 – b0 is sent
over a serial link, the format looks like this:

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bit

The line is normally high, and the start bit begins a
transmission by going low. Each bit of the byte

EE-41430 Fall 2007 Microcontroller Functions -52

transmission by going low. Each bit of the byte
being sent follows as a 1 or a 0. Finally, the stop
bit is sent as a 1.

14

Serial Data Format

If a data byte with the bits labeled b7 – b0 is sent
over a serial link, the format looks like this:

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bit

The line is normally high, and the start bit begins a
transmission by going low. Each bit of the byte

EE-41430 Fall 2007 Microcontroller Functions -53

transmission by going low. Each bit of the byte
being sent follows as a 1 or a 0. Finally, the stop
bit is sent as a 1.

Serial Data Format

Example: Suppose we are sending the ASCII for the
character “e”, which is 65H. The bits sent would
look like:look like:

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bit

Th t t bit i l th b i i f th

EE-41430 Fall 2007 Microcontroller Functions -54

The start bit signals the beginning of the
transmission, and the stop bit ends the
transmission.

Logic Analyzer Trace

Serial data

Start bit

0
L
S
B

0 0 0 1 1 0 0

Stop bit

Data is: 00110000
30H

ASCII for the number 0

EE-41430 Fall 2007 Microcontroller Functions -55

Baud rate clock (not
present external to
the microcontroller)

B

Serial Data Format

The example shown is for sending data with 8 bits
and no parity (referred to as 8-none). Another
possibility (since standard ASCII characters arepossibility (since standard ASCII characters are
only 7 bits long) is to send 7 bits of data, and one
parity.

The parity can be set so that there are an even
(called even parity) or odd (called odd parity)
number of 1’s in the transmission. This allows for
simple error checking

EE-41430 Fall 2007 Microcontroller Functions -56

simple error checking.

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bit

15

Serial Data Format

This form of serial communications is called
asynchronous, because there is no common
clock between the sender and the receiverclock between the sender and the receiver.

The sender and receiver must be set to the same
“baud” rate. In its simplest form, the baud rate is
the number of bits sent per second.

9600 baud is 9600 bits per second.

EE-41430 Fall 2007 Microcontroller Functions -57

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bit

Serial Data Format
At 9600 baud, each bit period is about 104 μsec. The sender

sends bits for that length of time.
The receiver watches for the start bit. When that transitionThe receiver watches for the start bit. When that transition

occurs, it checks for bits based on its local clock,
checking the bit in the center of each period.

If the clocks are close enough, the checks won’t drift out of
the correct bit period by the end of the reception.

Start
Bit

b0 b1 b2 b3 b4 b5 b6 b7
Stop
Bi

EE-41430 Fall 2007 Microcontroller Functions -58

Bit 0 1 2 3 4 5 b6 b7 Bit

1.5 bit period 1 bit period

Connectors and Line Format

The standard connector for a serial interface today
is the DB-9, a 9 pin connector. (Older serial
interfaces use DB 25 connectors)interfaces use DB-25 connectors.)

There are separate wires for transmit and receive, a
signal ground wire, and several flow control
signals. In most applications today, the flow
control signals can be ignored.

The two ends of the connection are called Data

EE-41430 Fall 2007 Microcontroller Functions -59

Terminal Equipment (DTE) (e.g. a computer) and
Data Communications Equipment (DCE) (e.g. a
modem).

Connectors and Line Format

If DCE is connected to DTE, a straight through cable
is used.

EE-41430 Fall 2007 Microcontroller Functions -60

16

Connectors and Line Format

It is much less clear today what is DTE and what is
DCE, and it is not uncommon to connect like
devices over a serial link (computer to computerdevices over a serial link (computer to computer
for example.)

If this is the situation, the cable has to cross signals
so that one ends transmit is connected to the
other ends receive, and vice versa.

Practical advice: If you serial link doesn’t work, and

EE-41430 Fall 2007 Microcontroller Functions -61

the setup of each end is the same (baud rate,
number of bits, parity, flow control, etc.) try
swapping the wires on pins 2 and 3 on your cable.

Connectors and Line Format

The actual signals sent are not 5 volt signals. RS-
232 sends a negative voltage (typically -12 volts)
to signify a “1” and a positive voltage (typicallyto signify a 1 and a positive voltage (typically
+12 volts) to signify a “0”.

This used to be a pain, because it meant that in
addition to the 5 volt supply for you
microcontroller, you needed a +12 and a -12 volt
supply for the serial connection.

EE-41430 Fall 2007 Microcontroller Functions -62

Modern technology has come to the rescue with a
device called the MAX232, which will take in a
signal that is 0 or 5 volts and put out a signal that
is +12 or -12 volts (using only a 5 volt supply!)

The USART

USART stands for Universal Synchronous
Asynchronous Receiver transmitter. It is a
hardware device built into computers andhardware device built into computers and
microcontrollers that accepts a byte from the
computer and shifts the byte our serially, and
accepts a serial set of bit and gives it to the
computer in parallel.

There is a USART inside the 18F4620, and it is a
common feature of microcontrollers (Note that if

EE-41430 Fall 2007 Microcontroller Functions -63

common feature of microcontrollers. (Note that if
your application calls for a serial connection, you
should choose a microcontroller with a built in
USART.)

The USART

The USART greatly simplifies the task of serial
communications. It is set up for the desired baud
rate and number of bits and then therate and number of bits, and then the
microcontroller need only give it the byte to send,
and the USART does the rest.

On the receive side, the USART receives the serial
bit stream and gives the corresponding byte to
the microcontroller.

EE-41430 Fall 2007 Microcontroller Functions -64

In the 18F4620 USART, the transmitter and receiver
are functionally separate, but share the same
baud rate generator

17

Setting the Baud Rate

The baud rate is the speed with which the bits are
transmitted. Both ends of the serial connection
need to be set to the same baud rateneed to be set to the same baud rate.

There are a number of standard baud rates.
The baud rate in the 18F4620 is controlled by a

number of registers:

EE-41430 Fall 2007 Microcontroller Functions -65

Setting the Baud Rate

These table found in the documentation tell you how
to set SPBRG for the desired baud rate.

Th i ft th h i f i tThere is often more than one choice for a given rate,
so you should use the one with the smallest error.

EE-41430 Fall 2007 Microcontroller Functions -66

The 18F4620 USART Transmitter
The transmitter of the USART looks like this. The

main function is to shift out a byte serially, and
this is done by the TSR registerthis is done by the TSR register.

EE-41430 Fall 2007 Microcontroller Functions -67

The 18F4620 USART Transmitter
There are a number of interrupt flags, interrupt enables, and

other bits that are associated with the transmitter:
• TXEN – Transmitter Enable

SPEN S i l P t E bl• SPEN Serial Port Enable
• TXIF and TXIE – Transmit interrupt flag and enable
• TRMT – Transmitter empty (MT) flag
• RC6 – External pin on the 18F4620

EE-41430 Fall 2007 Microcontroller Functions -68

18

The 18F4620 USART Transmitter
Serial transmission looks like this:
Note:

• TXIF indicates that the TXREG is empty and can accept• TXIF indicates that the TXREG is empty and can accept
another byte

• TRMT indicates that the transmit shift register is empty.
• These are slightly different things.

EE-41430 Fall 2007 Microcontroller Functions -69

The 18F4620 USART Transmitter
The difference between TRMT and TXIF can be seen

by looking at back to back serial transmissions.
The TXIF tells us that we can write another byte to y
be sent to TXREG. (Note that we can either of
these flags, and don’t have to use interrupts.)

EE-41430 Fall 2007 Microcontroller Functions -70

18F4620 Transmitter Registers
The registers involved with serial transmission are:

• SPBRGH and SPBRGL – Get the correct value for the
desired baud rate based on the system clock speed and
BRGHBRGH.

• TXREG – Location to place a byte to be transmitted out
the serial port.

• TXSTA – Transmitter status register.
• RCSAT – Receiver status register. SPEN (serial port

enable bit is found here.)
• PIE1 and PIR1 – Peripheral Interrupt Enable register

and Peripheral Interrupt Register (home to TXIE and

EE-41430 Fall 2007 Microcontroller Functions -71

and Peripheral Interrupt Register (home to TXIE and
TXIF respectively).

• INTCON – Global interrupt enable and peripheral
interrupt enable.

18F4620 Transmitter Registers

EE-41430 Fall 2007 Microcontroller Functions -72

19

Transmitter Status Register
The main register for serial transmission is TXSTA.

EE-41430 Fall 2007 Microcontroller Functions -73

BAUDCON register

The BUADCON register is associated with both
transmit and receive.

EE-41430 Fall 2007 Microcontroller Functions -74

Transmitter
To setup the serial transmitter:

• Set SPBRGH and SPBRGL based on the system clock,
and your choice of BRGH and BRG16.

• Set TXSTA for 8 bit asynchronous transmission with
the correct value of BRGH.

• Set the correct values into the BAUDCON register.
• Enable the serial port (bit SPEN found in RXSTA)

To send serial data:
• Be sure that the TXREG is empty (either by polling TXIF

EE-41430 Fall 2007 Microcontroller Functions -75

p y (y p g
or TRMT)

• Write the byte to be sent to TXREG.

Transmitter and Interrupts
The determination of whether to use interrupts for

serial transmission depends on the application.
Interrupts are most useful when you are sending a

string of characters that you have already created.
If this is the case, you can design your software to
use the TXIF interrupt to load the next character in
the string and send it.

For many other applications, it is easier just to poll
either TXIF or TRMT.

If using interrupts note that in addition to setting

EE-41430 Fall 2007 Microcontroller Functions -76

If using interrupts, note that in addition to setting
TXIE to enable the TXIF interrupt, you need to
enable global interrupts (GIE) and also peripheral
interrupts (PIE).

20

The 18F4620 USART Receiver
The receiver of the USART looks like this. The main function

is to shift in a byte serially, and this is done by the RSR
register.

EE-41430 Fall 2007 Microcontroller Functions -77

The 18F4620 USART Receiver
The basic setup is the same as the transmitter.

• Baud rate is based on the same SPBRG value as the transmitter.
• Data shifts in serially, and can be read from RCREG.y,
• Data comes in on external pin RC7.
• RCIE and RCIF are the Receiver Interrupt Enable and Receiver

Interrupt flag respectively.

EE-41430 Fall 2007 Microcontroller Functions -78

The 18F4620 USART Receiver

The receiver is a little more complicated to deal with,
for several reasons:
• When a byte is appears in the register is not under the• When a byte is appears in the register is not under the

control of the receiver, but depends on whatever is
sending the data.

• The receiver must be able to detect bad things that
might happen during transmission.

EE-41430 Fall 2007 Microcontroller Functions -79

The 18F4620 USART Receiver
Receiver Complications:

• Since an external source is determining when bytes are sent, the
microcontroller must be checking for data and reading it from the
receiver, otherwise an error called and “overrun” will occur. This
means that more bytes were received than can be held in the
receiver for your program to read, and thus you missed some data.

• Almost every USART stops receiving data when this happens, and
sets a flag (called the overrun error flag or OERR).

• If this occurs, you must reset the receiver to clear the error.
• To help this occur less frequently, the RCREG in the 18F4620 is a 2

byte FIFO (First In First Out) register that can hold to successive

EE-41430 Fall 2007 Microcontroller Functions -80

receptions.
• Another type of error that can be detected is a framing error, where

the receiver doesn’t find the stop bit where it is expected. (This
often means a baud rate mismatch between transmitter and
receiver.

21

The 18F4620 USART Receiver

Notice the framing error and overrun error flags, and
also that RCREG is actually a 2 byte FIFO.

EE-41430 Fall 2007 Microcontroller Functions -81

The 18F4620 USART Receiver

The timing diagram:

EE-41430 Fall 2007 Microcontroller Functions -82

18F4620 Receiver Registers
The registers involved with serial reception are:

• SPBRGH and SPBRGL – Gets the correct value for the
desired baud rate based on the system clock speed and
BRGHBRGH.

• RCREG – 2 byte FIFO that hold the received data for
reading by the microcontroller.

• RCSTA – Receiver status register.
• TXSTA – Home of BRGH
• PIE1 and PIR1 – Peripheral Interrupt Enable register

and Peripheral Interrupt Register (home to TXIE and
TXIF respectively)

EE-41430 Fall 2007 Microcontroller Functions -83

TXIF respectively).
• INTCON – Global interrupt enable (GIE) and peripheral

interrupt enable (PIE).

18F4620 Receiver Registers

EE-41430 Fall 2007 Microcontroller Functions -84

22

Receiver Status Register
The main register for serial reception is TXSTA.

EE-41430 Fall 2007 Microcontroller Functions -85

Receiver Status Register
The main register for serial reception is TXSTA.

EE-41430 Fall 2007 Microcontroller Functions -86

Receiver
To setup the serial receiver:

• Set SPBRG based on the system clock, and your
choice of BRGH.

• Be sure BRGH is set appropriately (in TXSTA).
• Set RXSTA for 8 bit asynchronous transmission and

enable the serial port (SPEN)
To receive serial data:

• Wait for data to appear (you can use interrupts or poll
the RCIF)

EE-41430 Fall 2007 Microcontroller Functions -87

• Read data from the RCREG.
• Be sure your software can deal with errors (overrun

and framing, particularly the former.)

Receiver and Interrupts
The determination of whether to use interrupts for serial

reception depends on the application, but it is often more
advantageous in reception, since the microcontroller does
not know when data is going to occurnot know when data is going to occur.

For some applications, it is easier just to poll either RCIF to
see when data is available.

It is wise to avoid turning on data reception until you are
ready to handle it, otherwise overrun errors may occur.

It is also wise to check for that error as part of your routine,
particularly if you are polling RCIF.

EE-41430 Fall 2007 Microcontroller Functions -88

p y y p g
If using interrupts, note that in addition to setting RCIE to

enable the RCIF interrupt, you need to enable global
interrupts (GIE) and also peripheral interrupts (PIE).

23

Serial I/O Software

Using the USART functions on a microcontroller, we
can write software routines the do the basic
functions of writing and reading characters to andfunctions of writing and reading characters to and
from the serial port. We will assume that we are
talking to a terminal application.

We need three low level routines:
• Initialize the USART
• putc() -- send a character out on the usart

EE-41430 Fall 2007 Microcontroller Functions -89

• getc() -- gets a character from the usart
We have already discussed the registers that need

to be set up in the init routine.

putc

This function sends a character to the terminal.
It is logical to have the prototype be:

• void putc(char dat)

xmit ready
for another
character?no

EE-41430 Fall 2007 Microcontroller Functions -90

send character

return

test
TXIF in pir1

or
TRMT in txsta txreg = dat;

getc

This function gets a character to the terminal.
It is logical to have the prototype be:

• char getc(void)

character
available
in buffer?no

EE-41430 Fall 2007 Microcontroller Functions -91

get character

echo character

test
RCIF in pir1 dat = rcreg;

return characterreturn dat;

putc(dat);

Bit Variables

The compiler allows you to define bits. For example,
TXIF is a bit in PIR1 that indicates that the
transmit register can be written totransmit register can be written to.

We can define this as a bit as:
volatile bit txif@pir1.4

We can then use this like any variable

if (txif) ...

EE-41430 Fall 2007 Microcontroller Functions -92

()

24

Bits

Warning: The system.h file defines bit names
associated with all these registers as follows:

/////// PIR1 Bits // PIR1 Bits ///////////////////////////////////////
#define TMR1IF 0x00000000
#define TMR2IF 0x00000001
#define CCP1IF 0x00000002
#define SSPIF 0x00000003
#define TXIF 0x00000004
#define RCIF 0x00000005
#define ADIF 0x00000006
#define PSPIF 0x00000007

EE-41430 Fall 2007 Microcontroller Functions -93

#define PSPIF 0x00000007

Note that these are simply offsets that indicate the
position in the register of the bit.

Bits

The C code if (TXIF) is equivalent to if (4)
which is always true.

Th d fi iti f i th liThese definitions are for using the complier
supplied functions such as set_bit

//Helper macros
#define clear_bit(reg, bitNumb) ((reg) &= ~(1 << (bitNumb)))
#define set_bit(reg, bitNumb) ((reg) |= (1 << (bitNumb)))
#define test_bit(reg, bitNumb) ((reg) & (1 << (bitNumb)))

EE-41430 Fall 2007 Microcontroller Functions -94

Advice

The following code snippets do the same thing:

olatile bit tbmt@pir1 4volatile bit tbmt@pir1.4
...
if(tbmt) ...

and
if (pir1 & (1 << 4)) ...

EE-41430 Fall 2007 Microcontroller Functions -95

If you every want me to look at your code and help
you find a bug, use the former.

Outline

• Lab 5 preview
• Functions

Interrupts
• Timer/counters
• A/D Conversion
• Serial I/O
• Pulse Width Modulation

EE-41430 Fall 2007 Microcontroller Functions -96

• Parallel I/O

25

Interrupts

A special kind of function is the interrupt function.
An interrupt is a signal that an event (in our context,

d t th t h d i th h d) hand event that happened in the hardware) has
occurred.

The interrupt function is the software that reacts to
that hardware occurrence.

We are going to first talk a little about what can
generate an interrupt in our microcontroller, and

EE-41430 Fall 2007 Microcontroller Functions -97

g
then more specifically about handling the
interrupts that occur.

Why Use Interrupts

Interrupts are most useful for events that happen
asynchronously.

S j t h th t d t t hSuppose our project has a sensor that detects when
the cup has been removed from the automatic
drink dispenser. We could have our software in a
look constantly checking this switch.

Often, however, there are other things that we need
to be doing, so a better approach might be to use

EE-41430 Fall 2007 Microcontroller Functions -98

interrupts.

18F4620 Interrupts

There are lots of things that can generate an
interrupt on the 4620. These include events such
as a timer turning over (counting from FFFF toas a timer turning over (counting from FFFF to
0000), a character arriving in the USART, etc.

There are also certain port bits that have interrupt
functions associated with them so that an
external event can cause the interrupt.

The interupts in this device are divided into two

EE-41430 Fall 2007 Microcontroller Functions -99

groups, regular interrupts and peripheral
interrupts.

There is also now priority associated with the
interrupts.

18F4620 Interrupts

How do I know if the interrupt I want to use is
peripheral or not? Read the damn manual! (oops,
sorry!)so y)

Case: USART receive:
• We saw that the RCIF (Receive interrupt flag) occurred

when a character shows up in the usart.
• Looking at the manual, we can see that this is a

peripheral interrupt because of the name of the register
in which it lives and the requirement of PEIE (Peripheral
interrupt enable) be set as can be seen in the manual.

EE-41430 Fall 2007 Microcontroller Functions -100

interrupt enable) be set as can be seen in the manual.

26

18F4620 Interrupts

Case: INT1:
• Bit 1 of port B can be set up as an edge triggered

interrupt (Edge triggered means that the interruptinterrupt. (Edge triggered means that the interrupt
occurs on the transition of the signal from one logic
lever to the other. Which transition is configurable.)

• INT1 is controlled by bits in the registers shown below.

EE-41430 Fall 2007 Microcontroller Functions -101

High Priority Interrupts in the 4620

EE-41430 Fall 2007 Microcontroller Functions -102

Low Priority Interrupts in the 4620

EE-41430 Fall 2007 Microcontroller Functions -103

18F4620 Interrupts

Why so many bits associated with an interrupt?
Here’s the code:

xxxIF is the Interrupt Flag A bit that gets set when the• xxxIF is the Interrupt Flag. A bit that gets set when the
interrupting event occurs. Note that interrupts don’t
have to be enabled for the bit to get set.

• xxxIE is the Interrupt Enable. For an event to interrupt
the processor, it must be enabled.

• xxxP is set to indicate whether the interrupt is high
Priority or low priority.

EE-41430 Fall 2007 Microcontroller Functions -104

To have an event interrupt the processor, you must
have the interrupt enabled, global interrupts
enabled, and if it is a peripheral interrupt,
peripheral interupts enabled.

27

Interrupts

EE-41430 Fall 2007 Microcontroller Functions -105

Interrupts

IPEN, GIEH, and PEIE
control interrupts
in bulkin bulk.

EE-41430 Fall 2007 Microcontroller Functions -106

Handling Interrupts in Software

There are several things you need to do to use an
interrupt:

Setup the particular hardware function to generate an• Setup the particular hardware function to generate an
interrupt.

• Enable that specific hardware interrupt to occur.
• Enable interrupts in general to occur (GEI).
• Perhaps enable peripheral interrupts (PEIE)
• Set IPEN as desired.
• Write software to do what you need to do when the

EE-41430 Fall 2007 Microcontroller Functions -107

• Write software to do what you need to do when the
interrupt occurs

Handling Interrupts in Software

There is a predefined function called interrupt which
is declared:

void interrupt (void);void interrupt (void);

Upon interrupt, the software execution switches
from whatever it was doing, and executes this
function. This works like any other function call,
except it occurs asynchronously based on some
hardware event, not because it was called by a
li i

EE-41430 Fall 2007 Microcontroller Functions -108

line in your program.
The interrupt routine should precede the main

routine in your code.

28

Handling Interrupts in Software

Notice that there are no arguments and nothing is
returned.

void interrupt (void);void interrupt (void);

The interrupt routine will be able to access all of the
variables defined in system.h since these are
global variables.

If there are other variables that you want your
interrupt routine and your main routine to share,

EE-41430 Fall 2007 Microcontroller Functions -109

you will have to make them global also.

Generic Interrupt Routine
Consider using both RBIF and INT1. The general form of your

interrupt routine would include:

void interrupt(void)
{
if (rcif) // see if receive char interrupt
{
rcif = 0; // clear interrupt bit

// do the interrupt stuff for rcif
}
if (int1) // see if interrupt int1 caused

EE-41430 Fall 2007 Microcontroller Functions -110

if (int1) // see if interrupt int1 caused
{
int1 = 0; // clear interrupt bit

// do the interrupt stuff for int1
}

}

Generic Interrupt Routine

Note that I am using bit variables to make my life
easier. I would define

volatile bit rcif@pir1.5
volatile bit int1if@intcon3.1

EE-41430 Fall 2007 Microcontroller Functions -111

Generic Interrupt Routine

I may be strange but I think it is easier and produces
more readable code if you do:

if (rcif) // see if receive char interrupt
{

rcif = 0; // clear interrupt bit

rather than

EE-41430 Fall 2007 Microcontroller Functions -112

if (pir1 & 0x20) // see if receive char int
{

pir1 &= 11011111b; // clear interrupt bit

29

Interrupt Routine Comments

We need to have our interrupt routine determine
which interrupt caused it to get there. We are only
using one here but it is good practiceusing one here, but it is good practice.

The interrupt routine needs to clear the interrupt flag
that caused the interrupt. If not, upon exit from the
interrupt routine, the flag would still be set and
the interrupt would occur immediately!!!

EE-41430 Fall 2007 Microcontroller Functions -113

Outline

• Lab 5 preview
• Functions
• Interrupts

Timer/counters
• A/D Conversion
• Serial I/O
• Parallel I/O

EE-41430 Fall 2007 Microcontroller Functions -114

Timer / Counters

A timer / counter is a register inside the
microcontroller that increments.

If it i t b d th t l k it iIf it increments based on the system clock it is
called a timer.

If it increments based on some external signal, it is
called a counter.

As a timer, the register will allow you to determine
how long an event was.

EE-41430 Fall 2007 Microcontroller Functions -115

g
As a counter, the register will allow you to determine

how many events occurred.

Counter Application

Suppose you are precisely positioning something
via a motor turning a screw drive. An shaft
encoder can give you a pulse for every nth of aencoder can give you a pulse for every nth of a
turn the shaft makes.

By counting these pulses, you can determine the
position.

Note that one of the functions related to
timer/counters is a compare function, which can

EE-41430 Fall 2007 Microcontroller Functions -116

be combined with a counter to tell you when a
particular value of the count is reached.

30

Timer 0 in the 4620
Timer 0 looks like this. Clock source is either an external

signal (T0CLK) or the system clock (FOSC/4). (T0CS
decides which.))

There is a pre-scaler, which can further divide the clock rate.

EE-41430 Fall 2007 Microcontroller Functions -117

Timer 0 in the 4620

Finally, the signal goes to the TMR0 register, and
when it overflows (switches from FF to 00) an
interrupt occursinterrupt occurs.

EE-41430 Fall 2007 Microcontroller Functions -118

Timer 0 in the 4620

There is also a 16 bit mode for this timer. 16 bits
allows for a longer count

EE-41430 Fall 2007 Microcontroller Functions -119

Timer 0 setup

Registers/Bits associated with timer 0.

EE-41430 Fall 2007 Microcontroller Functions -120

31

Setting up a Timer

EE-41430 Fall 2007 Microcontroller Functions -121

Timers

There are three other timers available in the
18F4620. They are either 8 or 16 bit timers. Each
has a similar setup to timer 0has a similar setup to timer 0.

There is also a watch dog timer that has a period
that can be set from 4 msec to 131 seconds.

The WDT can be used to recover from the main code
loop getting hung.

It can also be used to wake up the processor from

EE-41430 Fall 2007 Microcontroller Functions -122

sleep mode (a low power consumption mode).
The default is for the WDT to be enabled.

Tasks 5 and 6

Tasks 5 and 6 involve timers and interrupts.
Task 5 starts with a single interrupt timer

bi ti ith t k 6 ddi dcombination, with task 6 adding a second.
Issues:

• You will have to set up timer 0 to provide one interrupt
per second. This involves getting the timer set up
correctly, with the correct pre-scale and loading the
correct value into the count register.

• Set all the bits correctly so that the processor can be

EE-41430 Fall 2007 Microcontroller Functions -123

• Set all the bits correctly so that the processor can be
interrupted.

• Limitations of the compiler.

Tasks 5 and 6

The compiler does not allow you to call a function
from two different execution threads. Thus, if you
are using the LCD in the main program you can’tare using the LCD in the main program, you can t
use it as part of your interrupt service routing.

You don’t have to worry about using priority in the
interrupts. The default is to have a single priority
and that will work fine in tasks 5 and 6.

EE-41430 Fall 2007 Microcontroller Functions -124

32

Tasks 5 and 6

Use semaphores (aka flags) to communicate
between interrupt service routine and main
programprogram.
• Interrupt routine sets a flag (global) when the interrupt

occurs.
• Main program is watching for the flag to be set:

– Takes the appropriate action
– Clears the flag.

Be sure and clear the interrupt flag or you will re-

EE-41430 Fall 2007 Microcontroller Functions -125

Be sure and clear the interrupt flag or you will re-
interrupt as soon as you return to the main
program.

Tasks 5 and 6

To see if you are getting an interrupt you can:
• Increment and display a value on portd (the LED’s)
• Use the logic analyzer• Use the logic analyzer.

/* setup bit a1 as an output and define
a macro to toggle the bit */

volatile bit a1@PORTA.1; // name bit porta bit 1
#define toggle_a1 a1=1; nop(); a1=0; // define toggle
trisa.1 = 0; // make port a bit 1 output
a1=0; // start at zero

EE-41430 Fall 2007 Microcontroller Functions -126

• With this code included in your program, you can make
bit 1 of port a toggle with the statement

toggle_a1;

SPI Interface
Many microcontrollers have other serial interfaces built into

their hardware.
Common ones include I2C (Inter-Integrated Circuit) and SPICommon ones include I2C (Inter Integrated Circuit) and SPI

(Serial Peripheral Interface).
In the Microchip microcontrollers, these are part of the same

hardware called a Synchronous Serial Port.
These interfaces typically have a single master and some

number of slave devices.
It is called synchronous because the two communicating

EE-41430 Fall 2007 Microcontroller Functions -127

devices share a common clock provided by the master
device.

Since the Chipcon part uses an SPI interface, we will talk
about that in a little detail.

SPI Interface
The basic idea of an SPI interface is to share information

over a serial connection. It looks like the picture below.
Note that the master is the source of the clock.Note that the master is the source of the clock.

EE-41430 Fall 2007 Microcontroller Functions -128

Master Slave

33

SPI Interface
Data is given to the buffers in parallel and is shifted across

the link in serial.
This is how communications is done with the CC2420, andThis is how communications is done with the CC2420, and

your are able to set various registers, and well as transfer
the information that is carried in messages between
ZigBee devices.

EE-41430 Fall 2007 Microcontroller Functions -129

Master Slave

SPI Interface

A more detailed view of
the hardware is shown.

N tNote:
• Specific pins are used

for the various signals
• The clock can be

generated based on the
system clock or an
internal timer.

EE-41430 Fall 2007 Microcontroller Functions -130

• Numerous registers are
involved in the setup of
the device.

SPI Interface

Basic idea:
• (Master) When a byte is

written into the SSPBUF andwritten into the SSPBUF and
SSPSR, it gets shifted out on
the SDO pin using a clock that
is sent out on the SCK pin.

• (Slave) If the slave is selected,
it will receive the serial stream
and send back one of its own
(a reply) that will show up in

EE-41430 Fall 2007 Microcontroller Functions -131

(a reply) that will show up in
the SSPBUF register.

• (Master) Read the returning
data.

SPI Interface to CC2420

EE-41430 Fall 2007 Microcontroller Functions -132

34

Registers for SPI

EE-41430 Fall 2007 Microcontroller Functions -133

SPI Options

EE-41430 Fall 2007 Microcontroller Functions -134

SPI Software

In a similar fashion to the USART, you should think
about having low level functions that initialize,
write and read the SPIwrite, and read the SPI.

Initialization involves setting up the clock speed, the
edges used, etc.

Write and read are a little more complicated.
Essentially, to read something, you need to write
something.

EE-41430 Fall 2007 Microcontroller Functions -135

We can see what’s going on by looking at the timing
diagram.

SPI Software
To write a register in the CC2420, you send a command that

includes bits that specify which register (A5 – A0).
The appropriate value would be written to the SSPBUF, and itThe appropriate value would be written to the SSPBUF, and it

would automatically be shifted out.
As it is shifted out, a status byte is shifted in. When it is all

there, a flag will be set telling you that a byte is present
and needs to be read.

You read this byte, and then write in the high byte of the 16
bit word that is to be sent to the register.

EE-41430 Fall 2007 Microcontroller Functions -136

35

Analog to Digital Conversion

There are many sensors that measure an analog real
world value and produce a signal that is a voltage
or current that is proportional to the value beingor current that is proportional to the value being
measured.

Examples include:
• Strain Gauges
• Accelerometers
• Temperature Sensors

EE-41430 Fall 2007 Microcontroller Functions -137

To use these external values as part of an
embedded control application, we need a way to
represents the value of the analog signal inside
the microcontroller.

A/D in the 4620

The 18F4620 has a 10 bit successive approximation
converter.

Th l b l t d f f 13The analog source can be selected from one of 13
different pins.

There is also the capability to select different
reference voltages which set the range of the
analog input (maximum and minimum values.)

As usual, there are a number of different registers

EE-41430 Fall 2007 Microcontroller Functions -138

g
associated with using the A/D converter in the
device.

A/D in the 4620

EE-41430 Fall 2007 Microcontroller Functions -139

A/D in the 4620

Note:
• The analog signal must be allowed to settles before

doing the conversiondoing the conversion.
• Since it is a successive approximation converter, it is

not the fastest converter in the world, and the
conversion time must be chosen based on the system
clock. (The device needs more cycles to convert (per
bit) as the system clock speed goes up.)

• Some external signals can be used as references.

EE-41430 Fall 2007 Microcontroller Functions -140

• Pins used as analog inputs must be setup as analog.
(Note that analog is the default.)

36

A/D in the 4620

EE-41430 Fall 2007 Microcontroller Functions -141

Takeaways

One bit set wrong can make something not work.
Use the tools you have to debug:

• You have a fairly complete set of routines that print to
the LCD display.

• You can easily make a similar set that prints to the
terminal.

• If you are not sure you are setting a register correctly,
print it out:

EE-41430 Fall 2007 Microcontroller Functions -151

LCD_bin(rcsta);

For hardware issues, the logic analyzer helps

